GPL-GNN: Graph prompt learning for graph neural network

计算机科学 机器学习 人工智能 图形 学习迁移 瓶颈 标记数据 任务(项目管理) 无监督学习 理论计算机科学 管理 经济 嵌入式系统
作者
Zihao Chen,Ying Wang,Fuyuan Ma,Hao Yuan,Xin Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:286: 111391-111391
标识
DOI:10.1016/j.knosys.2024.111391
摘要

Despite the impressive results achieved in many areas of graph machine learning, through graph representation learning using supervised learning techniques, the limited availability of labeled training data has led to a bottleneck in terms of performance. To address this challenge, transfer learning has been proposed as an effective solution. It involves designing pre-training methods in an unsupervised manner to learn representations, which are then adapted to downstream tasks with limited labeled data. However, transfer learning can suffer from negative transfer when there is a major gap between the objectives of pre-training and the downstream tasks. To overcome these challenges, we introduce a novel framework, graph prompt learning-graph neural network (GPL-GNN), to narrow the gap between different tasks. GPL-GNN employs unsupervised methods, which require no labeled data, and incorporates unsupervised pre-trained structural representations into downstream tasks as prompt information. This information is combined with downstream data to train GNNs adapting them to the downstream tasks, and resulting in more adaptive, task-specific representations. Furthermore, the ability of GPL-GNN to learn graph representations without the constraints of pre-training and fine-tuning for model consistency increases the flexibility in choosing task-specific GNNs. In addition, the introduction of prototype networks as classification heads enables quick adaptation of GPL-GNNs to downstream tasks. Finally, we conduct extensive experiments on a benchmark dataset to demonstrate the effectiveness of GPL-GNN. The code is available in: https://github.com/chenzihaoww/GPL-GNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好人一生平安喵完成签到,获得积分10
刚刚
1秒前
开朗白山完成签到,获得积分10
1秒前
1秒前
科目三应助文静的海采纳,获得10
1秒前
mhpvv发布了新的文献求助10
2秒前
2秒前
汉堡包应助xueshulang采纳,获得10
2秒前
4秒前
Sylvia发布了新的文献求助30
4秒前
5秒前
123123发布了新的文献求助10
5秒前
研友_VZG7GZ应助777采纳,获得10
5秒前
苹果夜梦完成签到 ,获得积分10
5秒前
Czf完成签到 ,获得积分10
6秒前
飞快的梦山完成签到,获得积分10
7秒前
nenoaowu发布了新的文献求助10
7秒前
7秒前
ppyyg发布了新的文献求助10
7秒前
10秒前
10秒前
英姑应助五五乐采纳,获得10
10秒前
领导范儿应助我的小k8采纳,获得10
10秒前
星辰大海应助nenoaowu采纳,获得10
10秒前
queengause完成签到,获得积分10
11秒前
沉静丹寒发布了新的文献求助10
11秒前
mpshupi完成签到,获得积分10
11秒前
深情安青应助小化采纳,获得10
12秒前
zho应助等待冰之采纳,获得10
12秒前
奥特曼黑黑完成签到,获得积分10
12秒前
张三完成签到,获得积分10
13秒前
铜锣湾小研仔完成签到,获得积分0
14秒前
于鱼完成签到,获得积分10
15秒前
繁星长明应助薄荷味采纳,获得20
15秒前
共享精神应助李彦采纳,获得10
16秒前
NexusExplorer应助沉静丹寒采纳,获得10
18秒前
王天宇完成签到,获得积分10
18秒前
星辰大海应助xuan采纳,获得10
18秒前
举個栗子完成签到,获得积分10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589801
求助须知:如何正确求助?哪些是违规求助? 4674367
关于积分的说明 14793421
捐赠科研通 4629109
什么是DOI,文献DOI怎么找? 2532421
邀请新用户注册赠送积分活动 1501070
关于科研通互助平台的介绍 1468487