GPL-GNN: Graph prompt learning for graph neural network

计算机科学 机器学习 人工智能 图形 学习迁移 瓶颈 标记数据 任务(项目管理) 无监督学习 理论计算机科学 管理 经济 嵌入式系统
作者
Zihao Chen,Ying Wang,Fuyuan Ma,Hao Yuan,Xin Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:286: 111391-111391
标识
DOI:10.1016/j.knosys.2024.111391
摘要

Despite the impressive results achieved in many areas of graph machine learning, through graph representation learning using supervised learning techniques, the limited availability of labeled training data has led to a bottleneck in terms of performance. To address this challenge, transfer learning has been proposed as an effective solution. It involves designing pre-training methods in an unsupervised manner to learn representations, which are then adapted to downstream tasks with limited labeled data. However, transfer learning can suffer from negative transfer when there is a major gap between the objectives of pre-training and the downstream tasks. To overcome these challenges, we introduce a novel framework, graph prompt learning-graph neural network (GPL-GNN), to narrow the gap between different tasks. GPL-GNN employs unsupervised methods, which require no labeled data, and incorporates unsupervised pre-trained structural representations into downstream tasks as prompt information. This information is combined with downstream data to train GNNs adapting them to the downstream tasks, and resulting in more adaptive, task-specific representations. Furthermore, the ability of GPL-GNN to learn graph representations without the constraints of pre-training and fine-tuning for model consistency increases the flexibility in choosing task-specific GNNs. In addition, the introduction of prototype networks as classification heads enables quick adaptation of GPL-GNNs to downstream tasks. Finally, we conduct extensive experiments on a benchmark dataset to demonstrate the effectiveness of GPL-GNN. The code is available in: https://github.com/chenzihaoww/GPL-GNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wait发布了新的文献求助10
刚刚
刚刚
123123123发布了新的文献求助10
1秒前
2秒前
3秒前
安静红酒发布了新的文献求助10
3秒前
花生了什么树完成签到,获得积分10
3秒前
小郭发布了新的文献求助10
3秒前
绿颜色完成签到 ,获得积分10
3秒前
VLH完成签到,获得积分10
3秒前
寒山发布了新的文献求助10
4秒前
gq发布了新的文献求助10
5秒前
6秒前
所所应助酷炫小笼包采纳,获得10
6秒前
7秒前
7秒前
科研通AI6应助洛城l采纳,获得10
7秒前
YK完成签到,获得积分10
9秒前
打打应助Flong采纳,获得10
9秒前
岁岁菌完成签到,获得积分10
10秒前
jjh发布了新的文献求助10
10秒前
11秒前
11秒前
Jasper应助zlw121采纳,获得10
11秒前
11秒前
香蕉觅云应助陌陌采纳,获得10
12秒前
领导范儿应助雨群采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
耍酷雁风发布了新的文献求助10
13秒前
huangsile发布了新的文献求助10
13秒前
星辰大海应助gq采纳,获得10
13秒前
CROWN发布了新的文献求助10
14秒前
FAKER发布了新的文献求助30
14秒前
15秒前
16秒前
16秒前
科研通AI6应助识途采纳,获得10
16秒前
酷炫冬日关注了科研通微信公众号
16秒前
17秒前
虚幻百川应助iKYy采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507809
求助须知:如何正确求助?哪些是违规求助? 4603354
关于积分的说明 14484843
捐赠科研通 4537308
什么是DOI,文献DOI怎么找? 2486632
邀请新用户注册赠送积分活动 1469167
关于科研通互助平台的介绍 1441536