GPL-GNN: Graph prompt learning for graph neural network

计算机科学 机器学习 人工智能 图形 学习迁移 瓶颈 标记数据 任务(项目管理) 无监督学习 理论计算机科学 管理 经济 嵌入式系统
作者
Zihao Chen,Ying Wang,Fuyuan Ma,Hao Yuan,Xin Wang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:286: 111391-111391
标识
DOI:10.1016/j.knosys.2024.111391
摘要

Despite the impressive results achieved in many areas of graph machine learning, through graph representation learning using supervised learning techniques, the limited availability of labeled training data has led to a bottleneck in terms of performance. To address this challenge, transfer learning has been proposed as an effective solution. It involves designing pre-training methods in an unsupervised manner to learn representations, which are then adapted to downstream tasks with limited labeled data. However, transfer learning can suffer from negative transfer when there is a major gap between the objectives of pre-training and the downstream tasks. To overcome these challenges, we introduce a novel framework, graph prompt learning-graph neural network (GPL-GNN), to narrow the gap between different tasks. GPL-GNN employs unsupervised methods, which require no labeled data, and incorporates unsupervised pre-trained structural representations into downstream tasks as prompt information. This information is combined with downstream data to train GNNs adapting them to the downstream tasks, and resulting in more adaptive, task-specific representations. Furthermore, the ability of GPL-GNN to learn graph representations without the constraints of pre-training and fine-tuning for model consistency increases the flexibility in choosing task-specific GNNs. In addition, the introduction of prototype networks as classification heads enables quick adaptation of GPL-GNNs to downstream tasks. Finally, we conduct extensive experiments on a benchmark dataset to demonstrate the effectiveness of GPL-GNN. The code is available in: https://github.com/chenzihaoww/GPL-GNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助跳跃的问薇采纳,获得10
1秒前
浅夏发布了新的文献求助10
1秒前
今后应助无误采纳,获得10
2秒前
ll发布了新的文献求助10
2秒前
tttt发布了新的文献求助30
2秒前
adreamy发布了新的文献求助10
3秒前
xiao双月发布了新的文献求助10
5秒前
5秒前
5秒前
乔柯完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
浅夏完成签到,获得积分10
8秒前
8秒前
orixero应助JohnsonTse采纳,获得10
8秒前
8秒前
郭子仪完成签到,获得积分10
9秒前
9秒前
9秒前
CodeCraft应助麦子采纳,获得10
9秒前
qunqing3发布了新的文献求助10
10秒前
凝眸发布了新的文献求助10
10秒前
10秒前
11秒前
欧阳铭发布了新的文献求助10
11秒前
生动路人应助z69823采纳,获得10
11秒前
11秒前
务实元风完成签到,获得积分10
13秒前
Anna发布了新的文献求助10
13秒前
无误发布了新的文献求助10
13秒前
玻丽露露发布了新的文献求助10
14秒前
枝挽发布了新的文献求助10
14秒前
奥奥没有利饼干完成签到 ,获得积分10
14秒前
耀阳发布了新的文献求助10
14秒前
djbj2022发布了新的文献求助10
14秒前
凶狠的半山完成签到,获得积分10
15秒前
qunqing3完成签到,获得积分10
15秒前
nipangle关注了科研通微信公众号
16秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075