Multi-modal brain tumor segmentation via disentangled representation learning and region-aware contrastive learning

特征学习 分割 计算机科学 人工智能 特征(语言学) 模式识别(心理学) 代表(政治) 深度学习 图像分割 情态动词 机器学习 政治 哲学 语言学 化学 高分子化学 法学 政治学
作者
Tongxue Zhou
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:149: 110282-110282 被引量:13
标识
DOI:10.1016/j.patcog.2024.110282
摘要

Brain tumors are threatening the life and health of people in the world. Automatic brain tumor segmentation using multiple MR images is challenging in medical image analysis. It is known that accurate segmentation relies on effective feature learning. Existing methods address the multi-modal MR brain tumor segmentation by explicitly learning a shared feature representation. However, these methods fail to capture the relationship between MR modalities and the feature correlation between different target tumor regions. In this paper, I propose a multi-modal brain tumor segmentation network via disentangled representation learning and region-aware contrastive learning. Specifically, a feature fusion module is first designed to learn the valuable multi-modal feature representation. Subsequently, a novel disentangled representation learning is proposed to decouple the fused feature representation into multiple factors corresponding to the target tumor regions. Furthermore, contrastive learning is presented to help the network extract tumor region-related feature representations. Finally, the segmentation results are obtained using the segmentation decoders. Quantitative and qualitative experiments conducted on the public datasets, BraTS 2018 and BraTS 2019, justify the importance of the proposed strategies, and the proposed approach can achieve better performance than other state-of-the-art approaches. In addition, the proposed strategies can be extended to other deep neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LYY完成签到 ,获得积分10
1秒前
幽灵发布了新的文献求助10
1秒前
2秒前
深情芷发布了新的文献求助10
2秒前
DrSong完成签到,获得积分10
2秒前
Okayoooooo发布了新的文献求助10
3秒前
3秒前
AA发布了新的文献求助10
4秒前
qiu发布了新的文献求助10
5秒前
5秒前
彭于晏应助健壮的语雪采纳,获得10
5秒前
5秒前
任怡发布了新的文献求助10
6秒前
7秒前
情怀应助温暖白容采纳,获得10
7秒前
8秒前
10秒前
鸿鲤发布了新的文献求助10
10秒前
EW完成签到,获得积分10
11秒前
zzz发布了新的文献求助10
11秒前
打打应助景景景景色分明采纳,获得10
12秒前
NexusExplorer应助if采纳,获得10
13秒前
Letter发布了新的文献求助10
13秒前
15秒前
失眠无声完成签到,获得积分10
15秒前
nebula应助房产中介采纳,获得10
15秒前
顾矜应助GGBAO采纳,获得10
16秒前
16秒前
16秒前
Zyhaou发布了新的文献求助10
18秒前
18秒前
淡淡诗柳完成签到,获得积分10
18秒前
18秒前
北极星完成签到,获得积分10
18秒前
汉堡包应助深情芷采纳,获得10
18秒前
完美世界应助深情芷采纳,获得10
18秒前
19秒前
20秒前
芝士完成签到,获得积分10
20秒前
HXK完成签到,获得积分10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967872
求助须知:如何正确求助?哪些是违规求助? 3512982
关于积分的说明 11165825
捐赠科研通 3248059
什么是DOI,文献DOI怎么找? 1794090
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578