Machine Learning-Based Prediction of the CO2 Concentration in the Flue Gas and Carbon Emissions from a Waste Incineration Plant

焚化 烟气 城市固体废物 环境科学 废物管理 环境工程 温室气体 工程类 生态学 生物
作者
Yifei Ma,Pinjing He,Fan Lü,Hua Zhang,Shengjun Yan,De-Biao Cao,Hongju Mao,Dan Yu Jiang
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:4 (3): 737-747
标识
DOI:10.1021/acsestengg.3c00461
摘要

Monitoring the CO2 concentration in flue gas (CO2_G) is crucial to accurately calculate the direct carbon emissions associated with waste incineration. In this study, random forest (RF) and extreme gradient boosting (XGBoost) algorithms were used to predict CO2_G, using 21 operating variables from a municipal solid waste (MSW) incineration plant as input variables. The results showed a strong prediction performance for both the RF and XGBoost-based models with R2 values of 0.932 and 0.903, respectively. A feature importance analysis identified key variables used for model retraining, resulting in R2 values of 0.917 and 0.894, respectively. Based on the predicted and measured values of CO2_G and a balance calculation, the direct carbon emissions from waste incineration were determined. The emissions based on the predicted CO2_G value ranged from 283.38 to 348.39 kgCO2-eq/t, while the emission based on the measured value was 269.21 kgCO2-eq/t. To further validate the accuracy of the calculation results, the physical composition of MSW in the incineration plant was analyzed, resulting in a direct carbon emission estimate of 257.59 kgCO2-eq/t. These findings demonstrate the effective application of machine learning (ML)-based CO2_G predictions and overcome the labor-intensive and data-lagging aspects of carbon emission accounting in waste incineration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FangyingTang完成签到 ,获得积分10
刚刚
刚刚
LILING完成签到,获得积分10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得30
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
gao发布了新的文献求助10
1秒前
今后应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
文风杰采完成签到,获得积分10
1秒前
梦溪发布了新的文献求助10
2秒前
牛牛牛完成签到,获得积分10
2秒前
董蓝天完成签到 ,获得积分10
3秒前
善学以致用应助科研八戒采纳,获得10
3秒前
4秒前
SciGPT应助Chaimengdi采纳,获得10
4秒前
4秒前
华仔应助迟原采纳,获得10
5秒前
风趣的涵柏完成签到,获得积分10
6秒前
Fang7No完成签到,获得积分10
6秒前
Yvonne发布了新的文献求助20
6秒前
领导范儿应助小巧的大米采纳,获得10
6秒前
王思甜发布了新的文献求助10
6秒前
木子完成签到,获得积分10
6秒前
7秒前
7秒前
AronHUANG发布了新的文献求助10
7秒前
w婷完成签到 ,获得积分10
8秒前
猪猪hero发布了新的文献求助10
8秒前
wanci发布了新的文献求助30
8秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950510
求助须知:如何正确求助?哪些是违规求助? 3495946
关于积分的说明 11079852
捐赠科研通 3226328
什么是DOI,文献DOI怎么找? 1783799
邀请新用户注册赠送积分活动 867892
科研通“疑难数据库(出版商)”最低求助积分说明 800942