亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lesion-specific pericoronary adipose tissue CT attenuation improves risk prediction of major adverse cardiovascular events in coronary artery disease

医学 冠状动脉疾病 脂肪组织 心脏病学 病变 疾病 内科学 放射科 动脉 病理
作者
Meng Chen,Guangyu Hao,Su Hu,Can Chen,Qing Tao,Jialiang Xu,Yayuan Geng,Ximing Wang,Chunhong Hu
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:97 (1153): 258-266 被引量:1
标识
DOI:10.1093/bjr/tqad017
摘要

Abstract Objectives To determine whether lesion-specific pericoronary adipose tissue CT attenuation (PCATa) is superior to PCATa around the proximal right coronary artery (PCATa-RCA) and left anterior descending artery (PCATa-LAD) for major adverse cardiovascular events (MACE) prediction in coronary artery disease (CAD). Methods Six hundred and eight CAD patients who underwent coronary CTA from January 2014 to December 2018 were retrospectively included, with clinical risk factors, plaque features, lesion-specific PCATa, PCATa-RCA, and PCATa-LAD collected. MACE was defined as cardiovascular death, non-fatal myocardial infarction, unplanned revascularization, and hospitalization for unstable angina. Four models were established, encapsulating traditional factors (Model A), traditional factors and PCATa-RCA (Model B), traditional factors and PCATa-LAD (Model C), and traditional factors and lesion-specific PCATa (Model D). Prognostic performance was evaluated with C-statistic, area under receiver operator characteristic curve (AUC), and net reclassification index (NRI). Results Lesion-specific PCATa was an independent predictor for MACE (adjusted hazard ratio = 1.108, P < .001). The C-statistic increased from 0.750 for model A to 0.762 for model B (P = .078), 0.773 for model C (P = .046), and 0.791 for model D (P = .005). The AUC increased from 0.770 for model A to 0.793 for model B (P = .027), 0.793 for model C (P = .387), and 0.820 for model D (P = .019). Compared with model A, the NRIs for models B, C, and D were 0.243 (−0.323 to 0.792, P = .392), 0.428 (−0.012 to 0.835, P = .048), and 0.708 (0.152-1.016, P = .001), respectively. Conclusions Lesion-specific PCATa improves risk prediction of MACE in CAD, which is better than PCATa-RCA and PCATa-LAD. Advances in knowledge Lesion-specific PCATa was superior to PCATa-RCA and PCATa-LAD for MACE prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助mingjiang采纳,获得10
16秒前
153266916完成签到,获得积分10
44秒前
打打应助Arain456采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
CodeCraft应助简宁采纳,获得10
2分钟前
2分钟前
简宁发布了新的文献求助10
3分钟前
简宁完成签到,获得积分10
3分钟前
Akim应助yf采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
TEMPO完成签到,获得积分10
4分钟前
4分钟前
TEMPO发布了新的文献求助10
5分钟前
5分钟前
5分钟前
yf发布了新的文献求助10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
mrjohn完成签到,获得积分0
6分钟前
LIFE2020完成签到 ,获得积分10
6分钟前
6分钟前
Arain456发布了新的文献求助10
6分钟前
6分钟前
HC发布了新的文献求助10
6分钟前
hu完成签到 ,获得积分10
6分钟前
科研通AI6应助HC采纳,获得10
6分钟前
6分钟前
HC完成签到,获得积分10
6分钟前
汉堡包应助hu采纳,获得10
7分钟前
fuxiu完成签到,获得积分10
7分钟前
佳佳发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651023
求助须知:如何正确求助?哪些是违规求助? 4782826
关于积分的说明 15052979
捐赠科研通 4809799
什么是DOI,文献DOI怎么找? 2572607
邀请新用户注册赠送积分活动 1528610
关于科研通互助平台的介绍 1487618