An Attention-based Bidirectional LSTM Model for Continuous Cross-Subject Estimation of Knee Joint Angle during Running from sEMG Signals

运动学 计算机科学 人工智能 外骨骼 感知器 人工神经网络 多层感知器 概化理论 接头(建筑物) 均方误差 模式识别(心理学) 机器学习 模拟 工程类 数学 统计 经典力学 物理 建筑工程
作者
Alireza Rezaie Zangene,Oluwarotimi Williams Samuel,Ali Abbasi,Kianoush Nazarpour,Alistair A. McEwan,Guanglin Li
标识
DOI:10.1109/embc40787.2023.10340791
摘要

Accurate and robust estimation of joint kinematics via surface electromyogram (sEMG) signals provides a human-machine interaction (HMI)-based method that can be used to adequately control rehabilitation robots while performing complex movements, such as running, for motor function restoration in affected individuals. To this end, this paper proposes a deep learning-based model (AM-BiLSTM) that integrates a bidirectional long short-term memory (BiLSTM) network and an attention mechanism (AM) for robust estimation of joint kinematics. The proposed model was appraised using knee joint kinematic and sEMG signals collected from fourteen subjects who performed running at the speed of 2 m/s. The proposed model's generalizability was tested for both within- and cross-subject scenarios and compared with long short-term memory (LSTM) and multi-layer perceptron (MLP) networks in terms of normalized root-mean-square error and correlation coefficient metrics. Based on the statistical tests, the proposed AM-BiLSTM model significantly outperformed the LSTM and MLP methods in both within- and cross-subject scenarios (p<0.05) and achieved state-of-the-art performance.Clinical Relevance- The promising results of this study suggest that the AM-BiLSTM model has the potential for continuous cross-subject estimation of lower limb kinematics during running, which can be used to control sEMG-driven exoskeleton robots oriented towards rehabilitation training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十七应助起床做核酸采纳,获得10
刚刚
刚刚
Orange应助干饭闪电狼采纳,获得10
1秒前
1秒前
风趣契发布了新的文献求助10
1秒前
3秒前
狗妹那塞完成签到,获得积分10
3秒前
圈圈儿完成签到,获得积分10
4秒前
欣欣发布了新的文献求助10
4秒前
Rick发布了新的文献求助10
5秒前
XIAONAN完成签到,获得积分10
6秒前
YOUNG完成签到,获得积分10
8秒前
Orange应助陈骗骗采纳,获得10
9秒前
cxy完成签到,获得积分10
9秒前
12秒前
Aganlin完成签到 ,获得积分0
12秒前
风中的玲完成签到,获得积分10
13秒前
14秒前
14秒前
叶黄戍完成签到,获得积分10
15秒前
传统的斓完成签到,获得积分10
15秒前
Shibssjd完成签到,获得积分20
16秒前
陌路人完成签到,获得积分10
16秒前
16秒前
17秒前
小弦发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
南风应助Y2024采纳,获得10
20秒前
立军发布了新的文献求助10
20秒前
旺仔牛奶应助求求接收吧采纳,获得10
20秒前
屠龙少女发布了新的文献求助10
20秒前
21秒前
22秒前
22秒前
lucygaga完成签到 ,获得积分10
23秒前
yy2023发布了新的文献求助10
23秒前
25秒前
sdh完成签到,获得积分10
26秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3391511
求助须知:如何正确求助?哪些是违规求助? 3002625
关于积分的说明 8804775
捐赠科研通 2689201
什么是DOI,文献DOI怎么找? 1473018
科研通“疑难数据库(出版商)”最低求助积分说明 681311
邀请新用户注册赠送积分活动 674184