免疫系统
免疫记忆
免疫疗法
生物
免疫监视
免疫学
获得性免疫系统
先天免疫系统
免疫
医学
作者
Ayesha B. Alvero,Alexandra Fox,Bhaskara Reddy Madina,Marie M. Krady,Radhika Gogoi,Hussein Chehade,Valerian Nakaar,Bijan Almassian,Timur O. Yarovinsky,Thomas Rutherford,Gil Mor
出处
期刊:Cancer immunology research
[American Association for Cancer Research]
日期:2023-12-29
卷期号:12 (2): 261-274
标识
DOI:10.1158/2326-6066.cir-23-0127
摘要
Current immunotherapies have proven effective in strengthening antitumor immune responses, but constant opposing signals from tumor cells and the surrounding microenvironment eventually lead to immune escape. We hypothesized that in situ release of antigens and regulation of both the innate and adaptive arms of the immune system would provide a robust and long-term antitumor effect by creating immunologic memory against tumors. To achieve this, we developed CARG-2020, a genetically modified virus-like vesicle (VLV) that is a self-amplifying RNA with oncolytic capacity and encodes immune regulatory genes. CARG-2020 carries three immune modulators: (i) the pleiotropic antitumor cytokine IL12, in which the subunits (p35 and p40) are tethered together; (ii) the extracellular domain (ECD) of the protumor IL17RA, which serves as a dominant-negative antagonist; and (iii) a shRNA targeting PD-L1. Using a mouse model of ovarian cancer, we demonstrated the oncolytic effect and immune-modulatory capacities of CARG-2020. By enhancing IL12 and blocking IL17 and PD-L1, CARG-2020 successfully reactivated immune surveillance by promoting M1, instead of M2, macrophage differentiation, inhibiting MDSC expansion and establishing a potent CD8+ T cell-mediated antitumoral response. Furthermore, we demonstrated that this therapeutic approach provided tumor-specific and long-term protection against the establishment of new tumors. Our results provide a rationale for the further development of this platform as a therapeutic modality for ovarian cancer patients to enhance antitumor responses and prevent a recurrence.
科研通智能强力驱动
Strongly Powered by AbleSci AI