NCGLF2: Network combining global and local features for fusion of multisource remote sensing data

计算机科学 人工智能 人工神经网络 冗余(工程) 数据挖掘 卷积神经网络 算法 机器学习 模式识别(心理学) 操作系统
作者
Bing Tu,Qi Ren,Jun Li,Zhaolou Cao,Yunyun Chen,Antonio Plaza
出处
期刊:Information Fusion [Elsevier]
卷期号:104: 102192-102192 被引量:47
标识
DOI:10.1016/j.inffus.2023.102192
摘要

The fusion of multisource remote sensing (RS) data has demonstrated significant potential in target recognition and classification tasks. However, there is limited emphasis on capturing both high- and low-frequency information from these data sources. Additionally, effectively integrating multisource data remains a challenging task, as the absence of redundancy and discriminant information hampers the applications of RS data. In this paper, we propose a fusion network called network combining global and local features (NCGLF2) that integrates global and local features (GLF) extracted from multisource RS data. This approach effectively leverages the capabilities of convolutional neural networks (CNNs) to extract high frequency features while utilizing transformer architecture to replicate low frequency information and remote correlations. Firstly, a scale information aggregation (SIA) module extracts multiscale shallow layer features from the input data sources. Secondly, a structural information learning transformer (SIL-Trans) module captures low frequency features, while an invertible neural network (INN) module learns high frequency information. Finally, a GLF fusion module maximizes the complementary characteristics of multisource RS data and GLF to effectively fuse high- and low-frequency information. Our experimental results with three benchmark datasets indicate that NCGLF2 outperforms existing state-of-the-art approaches in terms of feature representation and compatibility with diverse data types. The code is available at https://github.com/renqi1998/NCGLF2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋依依发布了新的文献求助10
1秒前
霸气剑通完成签到,获得积分10
1秒前
慕青应助逝水无痕采纳,获得10
1秒前
3秒前
腼腆的雅绿完成签到,获得积分20
5秒前
斯文败类应助风音赫莱森采纳,获得30
5秒前
6秒前
6秒前
6秒前
8秒前
8秒前
不懂完成签到,获得积分10
9秒前
10秒前
10秒前
Eom发布了新的文献求助10
11秒前
yoyo完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
mabenchem完成签到,获得积分20
12秒前
13秒前
KKKK完成签到,获得积分10
13秒前
sunzhengkui完成签到,获得积分10
14秒前
务实的夏菡完成签到,获得积分10
14秒前
cfy完成签到,获得积分10
15秒前
KKKK发布了新的文献求助10
16秒前
mabenchem发布了新的文献求助10
16秒前
Marilinta发布了新的文献求助10
16秒前
Puffkten发布了新的文献求助10
16秒前
16秒前
17秒前
小蘑菇应助小寒同学采纳,获得10
17秒前
霸气剑通发布了新的文献求助10
18秒前
18秒前
Akim应助浮浮世世采纳,获得10
19秒前
19秒前
20秒前
20秒前
shen发布了新的文献求助10
22秒前
22秒前
asdfzxcv应助Li采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637725
求助须知:如何正确求助?哪些是违规求助? 4743904
关于积分的说明 15000090
捐赠科研通 4795864
什么是DOI,文献DOI怎么找? 2562227
邀请新用户注册赠送积分活动 1521731
关于科研通互助平台的介绍 1481704