Recognition of mulberry leaf diseases based on multi-scale residual network fusion SENet

残余物 比例(比率) 融合 生物 计算机科学 地理 地图学 算法 语言学 哲学
作者
Cheng P. Wen,Wei He,Wanling Wu,Xiang Liang,Jie Yang,Hongliang Nong,Zimian Lan
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (2): e0298700-e0298700
标识
DOI:10.1371/journal.pone.0298700
摘要

Silkworms are insects with important economic value, and mulberry leaves are the food of silkworms. The quality and quantity of mulberry leaves have a direct impact on cocooning. Mulberry leaves are often infected with various diseases during the growth process. Because of the subjectivity and time-consuming problems in artificial identification of mulberry leaf diseases. In this work, a multi-scale residual network fusion Squeeze-and-Excitation Networks (SENet) is proposed for mulberry leaf disease recognition. The mulberry leaf disease dataset was expanded by performing operations such as brightness enhancement, contrast enhancement, level flipping and adding Gaussian noise. Multi-scale convolution was used instead of the traditional single-scale convolution, allowing the network to be widened to obtain more feature information and avoiding the overfitting phenomenon caused by the network piling up too deep. SENet was introduced into the residual network to enhance the extraction of key feature information of the model, thus improving the recognition accuracy of the model. The experimental results showed that the method proposed in this paper can effectively improve the recognition performance of the model. The recognition accuracy reached 98.72%. The recall and F1 score were 98.73% and 98.72% respectively. Compared with some other models, this model has better recognition effect and can provide technical reference for intelligent mulberry leaf disease detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yefeng发布了新的文献求助10
刚刚
肖旻完成签到,获得积分10
刚刚
ppy完成签到,获得积分10
1秒前
1秒前
wyy发布了新的文献求助10
2秒前
Orange应助正电荷采纳,获得10
2秒前
安好发布了新的文献求助10
2秒前
细心无声完成签到 ,获得积分10
3秒前
and999发布了新的文献求助10
4秒前
4秒前
头上长草的慢羊羊完成签到,获得积分10
5秒前
5秒前
可爱的函函应助yummy采纳,获得10
5秒前
烟花应助啦啦啦采纳,获得10
5秒前
百里如雪发布了新的文献求助10
5秒前
酷波er应助俊逸的代曼采纳,获得10
6秒前
阚曦完成签到,获得积分10
7秒前
小五发布了新的文献求助30
10秒前
11秒前
wyy完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
13秒前
大气夜山完成签到 ,获得积分10
13秒前
13秒前
dhy完成签到 ,获得积分20
14秒前
14秒前
Jasper应助温酒叙人生采纳,获得10
15秒前
awu关闭了awu文献求助
15秒前
doctor2023完成签到,获得积分10
15秒前
16秒前
小明完成签到,获得积分10
16秒前
小五完成签到,获得积分10
16秒前
澹台烬完成签到,获得积分10
16秒前
yangderder发布了新的文献求助10
17秒前
小夏发布了新的文献求助10
18秒前
18秒前
18秒前
yummy完成签到,获得积分20
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151673
求助须知:如何正确求助?哪些是违规求助? 2803099
关于积分的说明 7851899
捐赠科研通 2460474
什么是DOI,文献DOI怎么找? 1309813
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760