亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Recognition of mulberry leaf diseases based on multi-scale residual network fusion SENet

残余物 比例(比率) 融合 生物 计算机科学 地理 地图学 算法 语言学 哲学
作者
Cheng P. Wen,Wei He,Wanling Wu,Xiang Liang,Jie Yang,Hongliang Nong,Zimian Lan
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (2): e0298700-e0298700
标识
DOI:10.1371/journal.pone.0298700
摘要

Silkworms are insects with important economic value, and mulberry leaves are the food of silkworms. The quality and quantity of mulberry leaves have a direct impact on cocooning. Mulberry leaves are often infected with various diseases during the growth process. Because of the subjectivity and time-consuming problems in artificial identification of mulberry leaf diseases. In this work, a multi-scale residual network fusion Squeeze-and-Excitation Networks (SENet) is proposed for mulberry leaf disease recognition. The mulberry leaf disease dataset was expanded by performing operations such as brightness enhancement, contrast enhancement, level flipping and adding Gaussian noise. Multi-scale convolution was used instead of the traditional single-scale convolution, allowing the network to be widened to obtain more feature information and avoiding the overfitting phenomenon caused by the network piling up too deep. SENet was introduced into the residual network to enhance the extraction of key feature information of the model, thus improving the recognition accuracy of the model. The experimental results showed that the method proposed in this paper can effectively improve the recognition performance of the model. The recognition accuracy reached 98.72%. The recall and F1 score were 98.73% and 98.72% respectively. Compared with some other models, this model has better recognition effect and can provide technical reference for intelligent mulberry leaf disease detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
siv发布了新的文献求助10
27秒前
张喜悦发布了新的文献求助10
40秒前
郝富完成签到,获得积分10
42秒前
wwwjy完成签到 ,获得积分10
48秒前
01完成签到 ,获得积分10
49秒前
1分钟前
1分钟前
1分钟前
Andy.发布了新的文献求助10
1分钟前
Andy.完成签到,获得积分10
1分钟前
自信秋烟完成签到 ,获得积分10
1分钟前
1分钟前
zhengqisong完成签到,获得积分20
1分钟前
zhengqisong发布了新的文献求助10
1分钟前
张喜悦发布了新的文献求助10
2分钟前
2分钟前
科研通AI6应助dd采纳,获得10
2分钟前
Jourmore完成签到,获得积分0
2分钟前
SUN完成签到,获得积分10
2分钟前
SUN发布了新的文献求助10
2分钟前
2分钟前
siv发布了新的文献求助10
2分钟前
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
GingerF应助Mirzat107采纳,获得50
2分钟前
2分钟前
2分钟前
2分钟前
张喜悦发布了新的文献求助10
2分钟前
白华苍松发布了新的文献求助10
2分钟前
jacob258完成签到 ,获得积分10
2分钟前
快乐小菜瓜完成签到 ,获得积分10
3分钟前
火星上向珊完成签到,获得积分10
3分钟前
张喜悦完成签到,获得积分10
3分钟前
siv发布了新的文献求助10
3分钟前
清寒完成签到,获得积分10
3分钟前
德尔塔捱斯完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534189
求助须知:如何正确求助?哪些是违规求助? 4622286
关于积分的说明 14582300
捐赠科研通 4562443
什么是DOI,文献DOI怎么找? 2500169
邀请新用户注册赠送积分活动 1479721
关于科研通互助平台的介绍 1450841