Estimating dynamic compressive strength of rock subjected to freeze-thaw weathering by data-driven models and non-destructive rock properties

风化作用 抗压强度 地质学 岩土工程 材料科学 复合材料 地球化学
作者
Shengtao Zhou,Lei Yu,Zong‐Xian Zhang,Xuedong Luo,Adeyemi Emman Aladejare,Toochukwu Ozoji
出处
期刊:Nondestructive Testing and Evaluation [Informa]
卷期号:: 1-24
标识
DOI:10.1080/10589759.2024.2313569
摘要

The dynamic compressive strength (DCS) of frozen-thawed rock influences the stability of rock mass in cold regions, especially when rock masses are possibly disturbed by dynamic loads. Laboratory freeze-thaw weathering treatment is usually time-consuming, and the dynamic strength test is destructive. Therefore, this paper attempts to quickly predict the DCS of frozen-thawed sandstones using data-driven methods, non-destructive rock properties, and basic environmental parameters. The sparrow search algorithm (SSA), gorilla troops optimiser, and dung beetle optimiser were chosen to develop two hyperparameters in the random forest (RF). The classic RF, back propagation neural network, and support vector regression models were taken as the control group. These six models were developed to predict the DCS. Their prediction results were compared. Finally, the sensitivity analysis was carried out to assess the significance of all input variables. The results indicate that the SSA – RF model yields the best prediction result, and three optimised models have better performance than single machine-learning models. Strain rate, dry density, and wave velocity are found to be the three most important parameters in DCS prediction, which further indicates that there is also a strong correlation between the characteristic impedance of the rock and the DCS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默惋清发布了新的文献求助10
1秒前
2秒前
汉堡包应助科研小趴菜采纳,获得10
4秒前
所所应助ffiu采纳,获得10
6秒前
自觉南风完成签到,获得积分10
7秒前
9秒前
李小心应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
paparazzi221应助科研通管家采纳,获得50
12秒前
12秒前
情怀应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
12秒前
Lucas应助坚强擎汉采纳,获得10
13秒前
13秒前
12完成签到 ,获得积分20
13秒前
14秒前
住在魔仙堡的鱼完成签到 ,获得积分10
16秒前
直率安双完成签到,获得积分10
18秒前
18秒前
Kk发布了新的文献求助10
19秒前
水博士完成签到,获得积分10
20秒前
20秒前
书记完成签到,获得积分10
21秒前
23秒前
zbumian发布了新的文献求助10
24秒前
今后应助Kk采纳,获得30
25秒前
ffiu发布了新的文献求助10
25秒前
默默惋清完成签到,获得积分10
30秒前
30秒前
30秒前
31秒前
34秒前
huofuman发布了新的文献求助10
35秒前
早睡早起发布了新的文献求助10
36秒前
36秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137814
求助须知:如何正确求助?哪些是违规求助? 2788675
关于积分的说明 7788104
捐赠科研通 2445088
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625828
版权声明 601043