亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimating dynamic compressive strength of rock subjected to freeze-thaw weathering by data-driven models and non-destructive rock properties

风化作用 抗压强度 地质学 岩土工程 材料科学 复合材料 地球化学
作者
Shengtao Zhou,Lei Yu,Zong‐Xian Zhang,Xuedong Luo,Adeyemi Emman Aladejare,Toochukwu Ozoji
出处
期刊:Nondestructive Testing and Evaluation [Informa]
卷期号:: 1-24
标识
DOI:10.1080/10589759.2024.2313569
摘要

The dynamic compressive strength (DCS) of frozen-thawed rock influences the stability of rock mass in cold regions, especially when rock masses are possibly disturbed by dynamic loads. Laboratory freeze-thaw weathering treatment is usually time-consuming, and the dynamic strength test is destructive. Therefore, this paper attempts to quickly predict the DCS of frozen-thawed sandstones using data-driven methods, non-destructive rock properties, and basic environmental parameters. The sparrow search algorithm (SSA), gorilla troops optimiser, and dung beetle optimiser were chosen to develop two hyperparameters in the random forest (RF). The classic RF, back propagation neural network, and support vector regression models were taken as the control group. These six models were developed to predict the DCS. Their prediction results were compared. Finally, the sensitivity analysis was carried out to assess the significance of all input variables. The results indicate that the SSA – RF model yields the best prediction result, and three optimised models have better performance than single machine-learning models. Strain rate, dry density, and wave velocity are found to be the three most important parameters in DCS prediction, which further indicates that there is also a strong correlation between the characteristic impedance of the rock and the DCS.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
forgman95*发布了新的文献求助10
8秒前
bbhk完成签到,获得积分10
10秒前
香蕉觅云应助Cloud采纳,获得10
10秒前
12秒前
chenchen97422发布了新的文献求助10
18秒前
24秒前
小枣完成签到 ,获得积分10
28秒前
31秒前
北挽完成签到 ,获得积分10
31秒前
32秒前
33秒前
娟娟完成签到 ,获得积分10
34秒前
34秒前
Cloud发布了新的文献求助10
36秒前
吕万鹏完成签到,获得积分10
36秒前
PAIDAXXXX发布了新的文献求助10
39秒前
Zero发布了新的文献求助10
39秒前
39秒前
gxmu6322完成签到,获得积分10
43秒前
赘婿应助科研通管家采纳,获得10
43秒前
43秒前
Cloud完成签到,获得积分10
43秒前
gege发布了新的文献求助10
44秒前
47秒前
矜天发布了新的文献求助10
52秒前
53秒前
57秒前
dingm2完成签到 ,获得积分10
1分钟前
桐桐应助噼里啪啦冲冲子采纳,获得10
1分钟前
婷123发布了新的文献求助10
1分钟前
1分钟前
1分钟前
蔡龙杰完成签到,获得积分10
1分钟前
1分钟前
自信萃发布了新的文献求助10
1分钟前
噼里啪啦冲冲子完成签到,获得积分10
1分钟前
大帅完成签到 ,获得积分10
1分钟前
蓝天应助合适从霜采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870591
求助须知:如何正确求助?哪些是违规求助? 6463951
关于积分的说明 15664463
捐赠科研通 4986675
什么是DOI,文献DOI怎么找? 2688931
邀请新用户注册赠送积分活动 1631313
关于科研通互助平台的介绍 1589367