Estimating dynamic compressive strength of rock subjected to freeze-thaw weathering by data-driven models and non-destructive rock properties

风化作用 抗压强度 地质学 岩土工程 材料科学 复合材料 地球化学
作者
Shengtao Zhou,Lei Yu,Zong‐Xian Zhang,Xuedong Luo,Adeyemi Emman Aladejare,Toochukwu Ozoji
出处
期刊:Nondestructive Testing and Evaluation [Informa]
卷期号:: 1-24
标识
DOI:10.1080/10589759.2024.2313569
摘要

The dynamic compressive strength (DCS) of frozen-thawed rock influences the stability of rock mass in cold regions, especially when rock masses are possibly disturbed by dynamic loads. Laboratory freeze-thaw weathering treatment is usually time-consuming, and the dynamic strength test is destructive. Therefore, this paper attempts to quickly predict the DCS of frozen-thawed sandstones using data-driven methods, non-destructive rock properties, and basic environmental parameters. The sparrow search algorithm (SSA), gorilla troops optimiser, and dung beetle optimiser were chosen to develop two hyperparameters in the random forest (RF). The classic RF, back propagation neural network, and support vector regression models were taken as the control group. These six models were developed to predict the DCS. Their prediction results were compared. Finally, the sensitivity analysis was carried out to assess the significance of all input variables. The results indicate that the SSA – RF model yields the best prediction result, and three optimised models have better performance than single machine-learning models. Strain rate, dry density, and wave velocity are found to be the three most important parameters in DCS prediction, which further indicates that there is also a strong correlation between the characteristic impedance of the rock and the DCS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一一多完成签到 ,获得积分0
刚刚
刚刚
滴滴滴完成签到,获得积分10
刚刚
顾矜应助ctttt采纳,获得10
刚刚
他方世界发布了新的文献求助10
1秒前
科研通AI6应助仙哥采纳,获得10
1秒前
1秒前
2秒前
2秒前
能干的灯泡完成签到,获得积分20
2秒前
Jimmy完成签到,获得积分10
2秒前
qqqq完成签到,获得积分10
3秒前
苗条一兰完成签到,获得积分10
3秒前
smottom应助荀连虎采纳,获得10
3秒前
Akim应助aaa采纳,获得10
3秒前
3秒前
xsnyy发布了新的文献求助10
3秒前
yuanyuan发布了新的文献求助40
3秒前
脑洞疼应助renrunxue采纳,获得10
4秒前
JLUO完成签到,获得积分10
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
天天快乐应助纯情苦瓜采纳,获得10
5秒前
ZX801完成签到,获得积分10
5秒前
毛77完成签到,获得积分10
5秒前
玿琤发布了新的文献求助10
5秒前
6秒前
梅里完成签到,获得积分10
6秒前
wanwei发布了新的文献求助10
6秒前
如意烨霖发布了新的文献求助10
6秒前
momomo发布了新的文献求助10
6秒前
7秒前
7秒前
某亮完成签到,获得积分10
7秒前
科研通AI6应助狂野若云采纳,获得10
7秒前
gugujk应助沉静丹寒采纳,获得10
7秒前
gqb完成签到,获得积分10
7秒前
深情安青应助星期8采纳,获得10
8秒前
ZX801发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665315
求助须知:如何正确求助?哪些是违规求助? 4875879
关于积分的说明 15112944
捐赠科研通 4824400
什么是DOI,文献DOI怎么找? 2582734
邀请新用户注册赠送积分活动 1536689
关于科研通互助平台的介绍 1495315