A multiscale and multivariable differentiated learning for carbon price forecasting

多元微积分 经济 计量经济学 计算机科学 工程类 控制工程
作者
Linfei Chen,Zhao Xuefeng
出处
期刊:Energy Economics [Elsevier BV]
卷期号:131: 107353-107353 被引量:3
标识
DOI:10.1016/j.eneco.2024.107353
摘要

Carbon price forecasting is important for policymakers and market participants. Due to the non-stationary and non-linearity of the carbon price, the commonly used methods adopt the ideology of 'decomposition and integration' to conduct multiscale forecasting. On this basis, multivariable forecasting discovers more informative knowledge with exogenous variables for carbon price forecasting, but it ignores that (i) the high-frequency and low-frequency components of the carbon price are mainly affected by different variables, and (ii) each variable contributes differently to each component forecasting. To address these challenges, we propose a multiscale and multivariable differentiated learning method for carbon price forecasting in this study. Specifically, different variables are introduced to forecast the high-frequency and low-frequency components, and a novel attention-weighted least squares support vector regression method is first proposed, in which the weight matrix of variables is constructed according to the idea of the attention mechanism. Furthermore, we analyze the contribution of each variable to the carbon price using Shapley additive explanations, thereby providing a reference for carbon market participants. We conduct experiments on the carbon price of the European Union Emissions Trading System and Hubei carbon market in China. Extensive results demonstrate that the proposed model achieves competitive and superior performance over the baseline and compared models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
song完成签到 ,获得积分10
刚刚
1秒前
光崽是谁发布了新的文献求助10
3秒前
Eva完成签到,获得积分10
3秒前
淞33完成签到 ,获得积分10
3秒前
朴素的尔云完成签到,获得积分10
4秒前
5秒前
Soph发布了新的文献求助10
6秒前
SD发布了新的文献求助20
6秒前
善学以致用应助研友_Ze2vV8采纳,获得10
7秒前
江毅关注了科研通微信公众号
8秒前
烟花应助54采纳,获得10
10秒前
dmy应助重要的奇异果采纳,获得10
11秒前
14秒前
15秒前
15秒前
开心的西瓜完成签到,获得积分10
16秒前
18秒前
18秒前
害怕的曼容完成签到,获得积分10
19秒前
Dingdang完成签到 ,获得积分10
19秒前
Xiaohu完成签到,获得积分10
19秒前
Akim应助N0V1CE采纳,获得10
19秒前
李健应助研友_Ze2vV8采纳,获得10
20秒前
江毅发布了新的文献求助10
20秒前
生椰拿铁不加生椰完成签到 ,获得积分10
21秒前
曾经如是发布了新的文献求助10
21秒前
22秒前
CherylZhao完成签到,获得积分10
23秒前
科研通AI5应助LiChangYuan采纳,获得10
23秒前
54发布了新的文献求助10
23秒前
bobo完成签到 ,获得积分10
27秒前
芭乐侠发布了新的文献求助80
29秒前
上官若男应助啦啦啦啦啦采纳,获得10
30秒前
曾经如是完成签到,获得积分10
30秒前
丘比特应助huvy采纳,获得10
30秒前
Jasper应助liu采纳,获得10
31秒前
33秒前
宗晓凡完成签到,获得积分10
34秒前
ww应助哈哈采纳,获得10
34秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741439
求助须知:如何正确求助?哪些是违规求助? 3284100
关于积分的说明 10038416
捐赠科研通 3000937
什么是DOI,文献DOI怎么找? 1646889
邀请新用户注册赠送积分活动 783919
科研通“疑难数据库(出版商)”最低求助积分说明 750478