亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Systematic tracking of nitrogen sources in complex river catchments: Machine learning approach based on microbial metagenomics

基因组 污染 随机森林 环境科学 分水岭 水质 非点源污染 生态学 计算机科学 机器学习 生物 生物化学 基因
作者
Ziqian Zhu,Junjie Ding,Ran Du,Zehua Zhang,Jiayin Guo,Xiaodong Li,Longbo Jiang,Gaojie Chen,Qiurong Bu,Ning Tang,Lixin Lu,Xiang Gao,Weixiang Li,Shuai Li,Guangming Zeng,Jie Liang
出处
期刊:Water Research [Elsevier]
卷期号:253: 121255-121255 被引量:1
标识
DOI:10.1016/j.watres.2024.121255
摘要

Tracking nitrogen pollution sources is crucial for the effective management of water quality; however, it is a challenging task due to the complex contaminative scenarios in the freshwater systems. The contaminative pattern variations can induce quick responses of aquatic microorganisms, making them sensitive indicators of pollution origins. In this study, the soil and water assessment tool, accompanied by a detailed pollution source database, was used to detect the main nitrogen pollution sources in each sub-basin of the Liuyang River watershed. Thus, each sub-basin was assigned to a known class according to SWAT outputs, including point source pollution-dominated area, crop cultivation pollution-dominated area, and the septic tank pollution-dominated area. Based on these outputs, the random forest (RF) model was developed to predict the main pollution sources from different river ecosystems using a series of input variable groups (e.g., natural macroscopic characteristics, river physicochemical properties, 16S rRNA microbial taxonomic composition, microbial metagenomic data containing taxonomic and functional information, and their combination). The accuracy and the Kappa coefficient were used as the performance metrics for the RF model. Compared with the prediction performance among all the input variable groups, the prediction performance of the RF model was significantly improved using metagenomic indices as inputs. Among the metagenomic data-based models, the combination of the taxonomic information with functional information of all the species achieved the highest accuracy (0.84) and increased median Kappa coefficient (0.70). Feature importance analysis was used to identify key features that could serve as indicators for sudden pollution accidents and contribute to the overall function of the river system. The bacteria Rhabdochromatium marinum, Frankia, Actinomycetia, and Competibacteraceae were the most important species, whose mean decrease Gini indices were 0.0023, 0.0021, 0.0019, and 0.0018, respectively, although their relative abundances ranged only from 0.0004 to 0.1 %. Among the top 30 important variables, functional variables constituted more than half, demonstrating the remarkable variation in the microbial functions among sites with distinct pollution sources and the key role of functionality in predicting pollution sources. Many functional indicators related to the metabolism of Mycobacterium tuberculosis, such as K24693, K25621, K16048, and K14952, emerged as significant important factors in distinguishing nitrogen pollution origins. With the shortage of pollution source data in developing regions, this suggested approach offers an economical, quick, and accurate solution to locate the origins of water nitrogen pollution using the metagenomic data of microbial communities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得30
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
41秒前
YL完成签到,获得积分10
51秒前
2分钟前
ling361完成签到,获得积分10
2分钟前
英俊的铭应助忧虑的安青采纳,获得20
3分钟前
大个应助Gavin采纳,获得30
3分钟前
丘比特应助Vashon采纳,获得10
3分钟前
3分钟前
Gavin发布了新的文献求助30
3分钟前
石人达完成签到 ,获得积分10
3分钟前
Star完成签到,获得积分10
3分钟前
4分钟前
TXZ06完成签到,获得积分10
4分钟前
4分钟前
Vashon发布了新的文献求助10
4分钟前
英俊的铭应助天马行空采纳,获得10
4分钟前
4分钟前
檸123456发布了新的文献求助10
5分钟前
ding应助Vashon采纳,获得30
5分钟前
檸123456完成签到,获得积分10
5分钟前
科研通AI2S应助morena采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
天马行空发布了新的文献求助10
5分钟前
5分钟前
哭泣秋蝶发布了新的文献求助10
5分钟前
赵培培发布了新的文献求助10
5分钟前
5分钟前
枫枫枫枫发布了新的文献求助30
5分钟前
赵培培完成签到,获得积分20
5分钟前
酚酞v发布了新的文献求助10
5分钟前
共享精神应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
张可完成签到 ,获得积分10
6分钟前
hzc完成签到,获得积分0
6分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126089
求助须知:如何正确求助?哪些是违规求助? 2776278
关于积分的说明 7729727
捐赠科研通 2431748
什么是DOI,文献DOI怎么找? 1292230
科研通“疑难数据库(出版商)”最低求助积分说明 622609
版权声明 600392