Scalable Swin Transformer network for brain tumor segmentation from incomplete MRI modalities

计算机科学 可扩展性 模式 分割 人工智能 深度学习 基本事实 磁共振成像 模式识别(心理学) 机器学习 数据挖掘 医学 数据库 放射科 社会科学 社会学
作者
Dongsong Zhang,Changjian Wang,Tianhua Chen,Weidao Chen,Yiqing Shen
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:149: 102788-102788 被引量:4
标识
DOI:10.1016/j.artmed.2024.102788
摘要

Deep learning methods have shown great potential in processing multi-modal Magnetic Resonance Imaging (MRI) data, enabling improved accuracy in brain tumor segmentation. However, the performance of these methods can suffer when dealing with incomplete modalities, which is a common issue in clinical practice. Existing solutions, such as missing modality synthesis, knowledge distillation, and architecture-based methods, suffer from drawbacks such as long training times, high model complexity, and poor scalability. This paper proposes IMS2Trans, a novel lightweight scalable Swin Transformer network by utilizing a single encoder to extract latent feature maps from all available modalities. This unified feature extraction process enables efficient information sharing and fusion among the modalities, resulting in efficiency without compromising segmentation performance even in the presence of missing modalities. Two datasets, BraTS 2018 and BraTS 2020, containing incomplete modalities for brain tumor segmentation are evaluated against popular benchmarks. On the BraTS 2018 dataset, our model achieved higher average Dice similarity coefficient (DSC) scores for the whole tumor, tumor core, and enhancing tumor regions (86.57, 75.67, and 58.28, respectively), in comparison with a state-of-the-art model, i.e. mmFormer (86.45, 75.51, and 57.79, respectively). Similarly, on the BraTS 2020 dataset, our model scored higher DSC scores in these three brain tumor regions (87.33, 79.09, and 62.11, respectively) compared to mmFormer (86.17, 78.34, and 60.36, respectively). We also conducted a Wilcoxon test on the experimental results, and the generated p-value confirmed that our model's performance was statistically significant. Moreover, our model exhibits significantly reduced complexity with only 4.47 M parameters, 121.89G FLOPs, and a model size of 77.13 MB, whereas mmFormer comprises 34.96 M parameters, 265.79 G FLOPs, and a model size of 559.74 MB. These indicate our model, being light-weighted with significantly reduced parameters, is still able to achieve better performance than a state-of-the-art model. By leveraging a single encoder for processing the available modalities, IMS2Trans offers notable scalability advantages over methods that rely on multiple encoders. This streamlined approach eliminates the need for maintaining separate encoders for each modality, resulting in a lightweight and scalable network architecture. The source code of IMS2Trans and the associated weights are both publicly available at https://github.com/hudscomdz/IMS2Trans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
弋甫发布了新的文献求助30
刚刚
思源应助追寻梦松采纳,获得10
1秒前
1秒前
还能计划完成签到,获得积分10
1秒前
天天发布了新的文献求助10
1秒前
2秒前
3秒前
yhao发布了新的文献求助10
4秒前
斯文败类应助曾经书翠采纳,获得10
5秒前
谦谦发布了新的文献求助10
5秒前
毛豆应助知足的憨人*-*采纳,获得10
6秒前
12321234完成签到,获得积分10
6秒前
8秒前
燕子发布了新的文献求助100
8秒前
阿树不是树完成签到,获得积分20
9秒前
善学以致用应助札七采纳,获得10
11秒前
wmk发布了新的文献求助10
11秒前
xrn发布了新的文献求助10
12秒前
13秒前
13秒前
tengyi完成签到 ,获得积分10
13秒前
dopamine完成签到,获得积分10
14秒前
彩色德天完成签到 ,获得积分10
14秒前
15秒前
15秒前
jialin完成签到 ,获得积分10
15秒前
fthpzhu完成签到 ,获得积分10
15秒前
专通下水道完成签到 ,获得积分10
15秒前
pluto应助听话的捕采纳,获得10
16秒前
16秒前
阔达磬发布了新的文献求助10
21秒前
Zhu发布了新的文献求助10
21秒前
machaell完成签到,获得积分20
22秒前
Hello应助耍酷的母鸡采纳,获得10
24秒前
wengjiaqi完成签到,获得积分10
24秒前
丘比特应助燕子采纳,获得10
24秒前
闪闪秋寒完成签到 ,获得积分10
25秒前
wmk完成签到,获得积分10
26秒前
冰之发布了新的文献求助30
27秒前
科研通AI5应助Sesenta1采纳,获得10
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Homolytic deamination of amino-alcohols 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728783
求助须知:如何正确求助?哪些是违规求助? 3273829
关于积分的说明 9983551
捐赠科研通 2989157
什么是DOI,文献DOI怎么找? 1640194
邀请新用户注册赠送积分活动 779103
科研通“疑难数据库(出版商)”最低求助积分说明 747961