Machine learning for prediction of concurrent endometrial carcinoma in patients diagnosed with endometrial intraepithelial neoplasia

医学 妇科 肿瘤科 内科学
作者
Gabriel Levin,Emad Matanes,Yoav Brezinov,Alex Ferenczy,Manuela Pelmus,Melica Nourmoussavi Brodeur,Shannon Salvador,Susie Lau,Walter H. Gotlieb
出处
期刊:Ejso [Elsevier]
卷期号:50 (3): 108006-108006 被引量:2
标识
DOI:10.1016/j.ejso.2024.108006
摘要

ObjectiveTo identify predictive clinico-pathologic factors for concurrent endometrial carcinoma (EC) among patients with endometrial intraepithelial neoplasia (EIN) using machine learning.Methodsa retrospective analysis of 160 patients with a biopsy proven EIN. We analyzed the performance of multiple machine learning models (n = 48) with different parameters to predict the diagnosis of postoperative EC. The prediction variables included: parity, gestations, sampling method, endometrial thickness, age, body mass index, diabetes, hypertension, serum CA-125, preoperative histology and preoperative hormonal therapy. Python 'sklearn' library was used to train and test the models. The model performance was evaluated by sensitivity, specificity, PPV, NPV and AUC. Five iterations of internal cross-validation were performed, and the mean values were used to compare between the models.ResultsOf the 160 women with a preoperative diagnosis of EIN, 37.5% (60) had a post-op diagnosis of EC. In univariable analysis, there were no significant predictors of EIN. For the five best machine learning models, all the models had a high specificity (71%–88%) and a low sensitivity (23%–51%). Logistic regression model had the highest specificity 88%, XG Boost had the highest sensitivity 51%, and the highest positive predictive value 62% and negative predictive value 73%. The highest area under the curve was achieved by the random forest model 0.646.ConclusionsEven using the most elaborate AI algorithms, it is not possible currently to predict concurrent EC in women with a preoperative diagnosis of EIN. As women with EIN have a high risk of concurrent EC, there may be a value of surgical staging including sentinel lymph node evaluation, to more precisely direct adjuvant treatment in the event EC is identified on final pathology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bobo151发布了新的文献求助10
刚刚
深情安青应助鲨鱼也蛀牙采纳,获得10
1秒前
AAAAA发布了新的文献求助10
1秒前
2秒前
moji完成签到,获得积分10
2秒前
小二郎应助小二郎采纳,获得10
3秒前
Dsunflower完成签到 ,获得积分10
3秒前
4秒前
HongY完成签到,获得积分10
5秒前
饱满沛儿发布了新的文献求助10
5秒前
情怀应助谦让的樱采纳,获得10
5秒前
惠胜发布了新的文献求助10
6秒前
6秒前
万能图书馆应助moji采纳,获得10
6秒前
whw完成签到,获得积分10
8秒前
科目三应助mingxiaoli0928采纳,获得10
8秒前
成就曼安发布了新的文献求助10
9秒前
9秒前
11秒前
ffhjlfwex发布了新的文献求助10
13秒前
小二郎发布了新的文献求助10
13秒前
ocean完成签到,获得积分10
14秒前
白綀完成签到 ,获得积分10
14秒前
16秒前
闻闻完成签到,获得积分10
16秒前
16秒前
磁控达人发布了新的文献求助10
18秒前
传奇3应助研友_ZbM2qn采纳,获得30
20秒前
21秒前
22秒前
张艺完成签到,获得积分10
23秒前
谦让的樱发布了新的文献求助10
23秒前
24秒前
唐飞飞飞飞完成签到,获得积分10
26秒前
fuerfuer完成签到,获得积分10
27秒前
27秒前
SciGPT应助罗向南采纳,获得10
27秒前
慕课魔芋发布了新的文献求助10
28秒前
搜集达人应助小点点采纳,获得10
28秒前
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302228
求助须知:如何正确求助?哪些是违规求助? 2936774
关于积分的说明 8478724
捐赠科研通 2610555
什么是DOI,文献DOI怎么找? 1425275
科研通“疑难数据库(出版商)”最低求助积分说明 662323
邀请新用户注册赠送积分活动 646569