Machine learning for prediction of concurrent endometrial carcinoma in patients diagnosed with endometrial intraepithelial neoplasia

医学 妇科 肿瘤科 内科学
作者
Gabriel Levin,Emad Matanes,Yoav Brezinov,Alex Ferenczy,Manuela Pelmus,Melica Nourmoussavi Brodeur,Shannon Salvador,Susie Lau,Walter H. Gotlieb
出处
期刊:Ejso [Elsevier BV]
卷期号:50 (3): 108006-108006 被引量:2
标识
DOI:10.1016/j.ejso.2024.108006
摘要

ObjectiveTo identify predictive clinico-pathologic factors for concurrent endometrial carcinoma (EC) among patients with endometrial intraepithelial neoplasia (EIN) using machine learning.Methodsa retrospective analysis of 160 patients with a biopsy proven EIN. We analyzed the performance of multiple machine learning models (n = 48) with different parameters to predict the diagnosis of postoperative EC. The prediction variables included: parity, gestations, sampling method, endometrial thickness, age, body mass index, diabetes, hypertension, serum CA-125, preoperative histology and preoperative hormonal therapy. Python 'sklearn' library was used to train and test the models. The model performance was evaluated by sensitivity, specificity, PPV, NPV and AUC. Five iterations of internal cross-validation were performed, and the mean values were used to compare between the models.ResultsOf the 160 women with a preoperative diagnosis of EIN, 37.5% (60) had a post-op diagnosis of EC. In univariable analysis, there were no significant predictors of EIN. For the five best machine learning models, all the models had a high specificity (71%–88%) and a low sensitivity (23%–51%). Logistic regression model had the highest specificity 88%, XG Boost had the highest sensitivity 51%, and the highest positive predictive value 62% and negative predictive value 73%. The highest area under the curve was achieved by the random forest model 0.646.ConclusionsEven using the most elaborate AI algorithms, it is not possible currently to predict concurrent EC in women with a preoperative diagnosis of EIN. As women with EIN have a high risk of concurrent EC, there may be a value of surgical staging including sentinel lymph node evaluation, to more precisely direct adjuvant treatment in the event EC is identified on final pathology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Iolite完成签到,获得积分10
2秒前
小马甲应助Shuaibin_Pei采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
hbhbj完成签到,获得积分10
3秒前
raolixiang完成签到,获得积分10
3秒前
5秒前
打工人不酷完成签到 ,获得积分10
6秒前
7秒前
9秒前
背后丹妗发布了新的文献求助10
9秒前
10秒前
10秒前
小凯同学完成签到 ,获得积分10
10秒前
hanleiharry1发布了新的文献求助10
12秒前
12秒前
12秒前
善良冷松发布了新的文献求助10
12秒前
14秒前
在水一方应助一定行采纳,获得10
15秒前
15秒前
15秒前
NexusExplorer应助快乐一江采纳,获得10
16秒前
16秒前
科研通AI5应助Lcccccc采纳,获得10
16秒前
在水一方应助杰2580采纳,获得10
19秒前
幸福大白发布了新的文献求助30
19秒前
Jasmine发布了新的文献求助10
19秒前
20秒前
善良冷松完成签到,获得积分10
20秒前
20秒前
善学以致用应助fengliurencai采纳,获得10
21秒前
个别完成签到,获得积分10
22秒前
22秒前
22秒前
23秒前
sihanzhiyu完成签到,获得积分20
24秒前
24秒前
wdy111应助ASZXDW采纳,获得20
26秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174