材料科学
阳极
电解质
惰性
离解(化学)
成核
金属
离子
化学工程
纳米技术
物理化学
冶金
有机化学
化学
电极
工程类
作者
Xiaomeng Tian,Qin Zhao,Mengmeng Zhou,Xinjun Huang,Ying Sun,Xiaoguang Duan,Lei Zhang,Hui Li,Dawei Su,Baohua Jia,Tianyi Ma
标识
DOI:10.1002/adma.202400237
摘要
Abstract The sluggish ions‐transfer and inhomogeneous ions‐nucleation induce the formation of randomly‐oriented dendrites on Zn anode, while the chemical instability at anode‐electrolyte interface triggers detrimental side reactions. Herein, we in‐situ design a multifunctional hybrid interphase of Bi/Bi 2 O 3 , for the first time resulting in a novel synergistic regulation mechanism involving: (i) chemically‐inert interface protection mechanism suppresses side‐reactions; and more fantastically, (ii) innovative thermodynamically‐favorable Zn atomic clusters dissociation mechanism impedes dendrites formation. Assisted by collaborative modulation behavior, the Zn@Bi/Bi 2 O 3 symmetry‐cell delivers an ultrahigh cumulative plating capacity of 1.88 Ah cm −2 at 5 mA cm −2 and ultralong lifetimes of 300 h even at high current density and depth of discharge (10 mA cm −2 , DOD Zn : 60%). Furthermore, under a low E/C (electrolyte‐to‐capacity ratio: 45 μL mAh −1 ) and N/P (negative‐to‐positive capacity ratio: 6.3), Zn@Bi/Bi 2 O 3 ||MnO 2 full cell exhibits a superior capacity retention of 86.7% after 500 cycles at 1 A g −1 , which outperforms most existing interphases. The scaled‐up Zn@Bi/Bi 2 O 3 ||MnO 2 battery module (6 V, 1 Ah), combined with the photovoltaic panel, presents excellent renewable‐energy‐storage ability and long output lifetime (12 h). This work provides a fantastic synergistic mechanism to achieve the ultrastable Zn anode and can be greatly promised to apply it into other metal‐based batteries. This article is protected by copyright. All rights reserved
科研通智能强力驱动
Strongly Powered by AbleSci AI