Artificial intelligence, green technological progress, energy conservation, and carbon emission reduction in China: An examination based on dynamic spatial Durbin modeling

节能 技术变革 还原(数学) 面板数据 温室气体 能源消耗 中国 高效能源利用 溢出效应 环境科学 样品(材料) 驱动因素 自然资源经济学 环境经济学 生态学 计量经济学 工程类 地理 经济 微观经济学 数学 化学 生物 考古 色谱法 宏观经济学 电气工程 几何学
作者
Wangni Zhou,Yuqin Zhang,Xuekun Li
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:446: 141142-141142 被引量:25
标识
DOI:10.1016/j.jclepro.2024.141142
摘要

Artificial Intelligence (AI), as the core driving force of industrial and technological innovation, has brought technological advances that profoundly affect energy conservation and carbon emission reduction in China. This study constructs a dynamic spatial Durbin model to empirically analyze AI's mechanism path using Chinese inter-provincial panel data as a sample. The findings show the following: (1) Spatial and temporal variations exist in AI development levels and energy conservation and carbon emission reduction. (2) AI has a significant negative impact on energy consumption efficiency and a significant negative spatial spillover effect on carbon emission efficiency, and the effects of AI development level on energy conservation and carbon emission reduction are mainly dominated short term. (3) Green technological progress on both the input and output sides has not played a determinant role in the effects of AI on energy conservation and carbon emission reduction. (4) Given the moderating effect of the degree of factor market development, the improvement of green technological advances can play a positive role in the impact of AI on energy and carbon reduction. These findings suggest the need to provide policy support for energy conservation and carbon emission reduction by improving the spatial and regional linkage mechanism to narrow spatial and temporal differences in development levels, formulate AI policies addressing regional heterogeneity, promote the full transformation of AI's short-term effects into long-term effects, emphasize the negative role of green technological advances, and accelerate the transformation of green technological achievements, among other measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助san采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
3秒前
香菜完成签到,获得积分10
4秒前
小舟完成签到,获得积分10
7秒前
雪白凤发布了新的文献求助10
8秒前
Muse应助榴莲采纳,获得10
9秒前
9秒前
10秒前
完美世界应助zhaochenyu采纳,获得10
11秒前
11秒前
自信的又柔完成签到,获得积分10
11秒前
13秒前
san发布了新的文献求助10
15秒前
wanci应助凯凯采纳,获得10
15秒前
16秒前
lucia5354完成签到,获得积分10
16秒前
炼金术士完成签到,获得积分10
16秒前
好好学习发布了新的文献求助20
16秒前
SteveRogers发布了新的文献求助10
17秒前
17秒前
21秒前
21秒前
22秒前
赘婿应助ZZDXXX采纳,获得10
24秒前
白桃小罐头完成签到,获得积分10
27秒前
28秒前
一条蛆发布了新的文献求助10
28秒前
29秒前
30秒前
CipherSage应助castleman采纳,获得30
33秒前
33秒前
凯凯发布了新的文献求助10
33秒前
阔达的香之应助可爱路人采纳,获得10
35秒前
37秒前
lll222发布了新的文献求助200
37秒前
19应助在水一方采纳,获得200
39秒前
小呆瓜与鱼完成签到 ,获得积分10
40秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343244
求助须知:如何正确求助?哪些是违规求助? 2970337
关于积分的说明 8643531
捐赠科研通 2650290
什么是DOI,文献DOI怎么找? 1451228
科研通“疑难数据库(出版商)”最低求助积分说明 672118
邀请新用户注册赠送积分活动 661447