The Flavor Characteristics, Antioxidant Capability, and Storage Year Discrimination Based on Backpropagation Neural Network of Organic Green Tea (Camellia sinensis) during Long-Term Storage

化学 电子舌 山茶 食品科学 多酚 鲜味 丹宁 风味 抗氧化剂 品味 生物化学 植物 生物
作者
Xiaomei Wen,Shanjie Han,Jiahui Wang,Yanxia Zhang,Lining Tan,Chen Chen,Baoyu Han,M. Z. Wang
出处
期刊:Foods [Multidisciplinary Digital Publishing Institute]
卷期号:13 (5): 753-753 被引量:4
标识
DOI:10.3390/foods13050753
摘要

The storage period of tea is a major factor affecting tea quality. However, the effect of storage years on the non-volatile major functional components and quality of green tea remains largely unknown. In this study, a comparative analysis of organic green teas with varying storage years (1–16 years) was conducted by quantifying 47 functional components, using electronic tongue and chromatic aberration technology, alongside an evaluation of antioxidative capacity. The results indicated a significant negative correlation between the storage years and levels of tea polyphenols, total amino acids, soluble sugars, two phenolic acids, four flavonols, three tea pigments, umami amino acids, and sweet amino acids. The multivariate statistical analysis revealed that 10 functional components were identified as effective in distinguishing organic green teas with different storage years. Electronic tongue technology categorized organic green teas with different storage years into three classes. The backpropagation neural network (BPNN) analysis demonstrated that the classification predictive ability of the model based on the electronic tongue was superior to the one based on color difference values and 10 functional components. The combined analysis of antioxidative activity and functional components suggested that organic green teas with shorter storage periods exhibited stronger abilities to suppress superoxide anion radicals and hydroxyl radicals and reduce iron ions due to the higher content of eight components. Long-term-stored organic green teas, with a higher content of substances like L-serine and theabrownins, demonstrated stronger antioxidative capabilities in clearing both lipid-soluble and water-soluble free radicals. Therefore, this study provided a theoretical basis for the quality assessment of green tea and prediction of green tea storage periods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满果妈妈完成签到,获得积分20
1秒前
1秒前
彭于晏应助123采纳,获得10
2秒前
jxx完成签到 ,获得积分10
4秒前
5秒前
满果妈妈发布了新的文献求助10
5秒前
科研通AI2S应助ZZY采纳,获得10
6秒前
6秒前
6秒前
SPQR完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
香飘飘完成签到,获得积分10
8秒前
10秒前
兔斯基发布了新的文献求助30
11秒前
像只猫发布了新的文献求助10
11秒前
个性德天完成签到,获得积分10
11秒前
11秒前
Quinta发布了新的文献求助10
12秒前
脑洞疼应助发疯研究生采纳,获得10
12秒前
科目三应助HYH采纳,获得10
12秒前
super小萌萌完成签到,获得积分10
14秒前
14秒前
Zoeytam完成签到,获得积分10
15秒前
zorro3574发布了新的文献求助10
16秒前
沙漠水发布了新的文献求助10
16秒前
赵婧秀完成签到 ,获得积分10
17秒前
科研混子发布了新的文献求助10
17秒前
美人凝凝发布了新的文献求助10
18秒前
SA发布了新的文献求助10
19秒前
21秒前
hongzhoux应助闪闪的迎天采纳,获得50
21秒前
wuhen完成签到,获得积分10
23秒前
24秒前
SYLH应助科研通管家采纳,获得10
24秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
SYLH应助科研通管家采纳,获得10
24秒前
24秒前
Rita应助科研通管家采纳,获得20
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732742
求助须知:如何正确求助?哪些是违规求助? 3276859
关于积分的说明 9999417
捐赠科研通 2992554
什么是DOI,文献DOI怎么找? 1642317
邀请新用户注册赠送积分活动 780332
科研通“疑难数据库(出版商)”最低求助积分说明 748720