3D-DGGAN: A Data-Guided Generative Adversarial Network for High Fidelity in Medical Image Generation

对抗制 计算机科学 医学影像学 生成对抗网络 图像(数学) 人工智能 生成语法 计算机视觉
作者
J. Kim,Yan Li,Byeong‐Seok Shin
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 2904-2915
标识
DOI:10.1109/jbhi.2024.3367375
摘要

Three-dimensional images are frequently used in medical imaging research for classification, segmentation, and detection. However, the limited availability of 3D images hinders research progress due to network training difficulties. Generative methods have been proposed to create medical images using AI techniques. Nevertheless, 2D approaches have difficulty dealing with 3D anatomical structures, which can result in discontinuities between slices. To mitigate these discontinuities, several 3D generative networks have been proposed. However, the scarcity of available 3D images makes training these networks with limited samples inadequate for producing high-fidelity 3D images. We propose a data-guided generative adversarial network to provide high fidelity in 3D image generation. The generator creates fake images with noise using reference code obtained by extracting features from real images. The generator also creates decoded images using reference code without noise. These decoded images are compared to the real images to evaluate fidelity in the reference code. This generation process can create high-fidelity 3D images from only a small amount of real training data. Additionally, our method employs three types of discriminator: volume (evaluates all the slices), slab (evaluates a set of consecutive slices), and slice (evaluates randomly selected slices). The proposed discriminator enhances fidelity by differentiating between real and fake images based on detailed characteristics. Results from our method are compared with existing methods by using quantitative analysis such as Fréchet inception distance and maximum mean discrepancy. The results demonstrate that our method produces more realistic 3D images than existing methods. To support reproducibility, our code is publicly available on our GitHub repository, accessible at https://github.com/mskim99/3D-DGGAN/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江流儿完成签到,获得积分10
1秒前
星辰大海应助Sarah采纳,获得10
1秒前
2秒前
2秒前
谢紫玲完成签到,获得积分10
3秒前
3秒前
3秒前
6秒前
6秒前
CHAIZH发布了新的文献求助10
8秒前
疯狂比利发布了新的文献求助10
8秒前
孙成成完成签到 ,获得积分10
9秒前
11秒前
梦桃完成签到 ,获得积分10
14秒前
何糖发布了新的文献求助10
14秒前
H哈完成签到,获得积分10
15秒前
mimimi关注了科研通微信公众号
17秒前
謃河鷺起完成签到,获得积分10
17秒前
18秒前
迟迟池完成签到 ,获得积分10
21秒前
勤奋的灵波完成签到,获得积分20
22秒前
星辰大海应助科研通管家采纳,获得30
22秒前
22秒前
xjcy应助科研通管家采纳,获得10
22秒前
情怀应助科研通管家采纳,获得10
22秒前
22秒前
烟花应助科研通管家采纳,获得10
22秒前
隐形曼青应助科研通管家采纳,获得10
22秒前
李健应助科研通管家采纳,获得10
22秒前
22秒前
Akim应助科研通管家采纳,获得10
22秒前
汉堡包应助科研通管家采纳,获得10
23秒前
CodeCraft应助科研通管家采纳,获得10
23秒前
Jasper应助科研通管家采纳,获得10
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
23秒前
奥利奥应助科研通管家采纳,获得10
23秒前
踏实滑板应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3211979
求助须知:如何正确求助?哪些是违规求助? 2860806
关于积分的说明 8126121
捐赠科研通 2526710
什么是DOI,文献DOI怎么找? 1360523
科研通“疑难数据库(出版商)”最低求助积分说明 643233
邀请新用户注册赠送积分活动 615424