A model of subcutaneous pramlintide pharmacokinetics and its effect on gastric emptying: Proof-of-concept based on populational data

胃排空 胰淀素 医学 药代动力学 计算机科学 内科学 胰岛素 小岛
作者
Clara Furió-Novejarque,Iván Sala-Mira,José-Luis Díez,Jorge Bondía
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 107968-107968 被引量:2
标识
DOI:10.1016/j.cmpb.2023.107968
摘要

Pramlintide, an amylin analog, has been coming up as an agent in type 1 diabetes dual-hormone therapies (insulin/pramlintide). Since pramlintide slows down gastric emptying, it allows for easing glucose control and reducing the burden of meal announcements. Pre-clinical in silico evaluations are a key step in the development of any closed-loop strategy. However, mathematical models are needed, and pramlintide models in the literature are scarce. This work proposes a proof-of-concept pramlintide model, describing its subcutaneous pharmacokinetics (PK) and its effect on gastric emptying (PD). The model is validated with published populational (clinical) data. The model development is divided into three stages: intravenous PK, subcutaneous PK, and PD modeling. In each stage, a set of model structures are proposed, and their performance is assessed using the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). In order to evaluate the modulation of the rate of gastric emptying, a literature meal model was used. The final pramlintide model comprises four compartments and a function that modulates gastric emptying depending on plasma pramlintide. Results show an appropriate fit for the data. Some aspects are left as open questions due to the lack of specific data (e.g., the influence of meal composition on the pramlintide effect). Moreover, further validation with individual data is necessary to propose a virtual cohort of patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
柚子发布了新的文献求助10
1秒前
2秒前
12完成签到,获得积分10
3秒前
alan发布了新的文献求助10
3秒前
顾矜应助淡定的不言采纳,获得10
4秒前
5秒前
tepqi完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
毛於菟发布了新的文献求助10
7秒前
8秒前
容二遥关注了科研通微信公众号
8秒前
布噜噜噜噜完成签到,获得积分10
8秒前
8秒前
9秒前
大模型应助eblog采纳,获得10
9秒前
Ting发布了新的文献求助20
9秒前
10秒前
端庄龙猫发布了新的文献求助30
10秒前
juaner完成签到,获得积分10
10秒前
KAI发布了新的文献求助10
11秒前
天天快乐应助二维马采纳,获得10
11秒前
11秒前
徐sir发布了新的文献求助10
11秒前
牛战士完成签到,获得积分10
12秒前
FSS完成签到,获得积分20
12秒前
YANYAN发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
cc应助Kycg采纳,获得20
13秒前
alan完成签到,获得积分10
13秒前
13秒前
muchen发布了新的文献求助10
14秒前
15秒前
JJ发布了新的文献求助10
16秒前
16秒前
小兵发布了新的文献求助10
16秒前
17秒前
lsl599应助guojingjing采纳,获得10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049