A model of subcutaneous pramlintide pharmacokinetics and its effect on gastric emptying: Proof-of-concept based on populational data

胃排空 胰淀素 医学 药代动力学 计算机科学 内科学 胰岛素 小岛
作者
Clara Furió-Novejarque,Iván Sala-Mira,José-Luis Díez,Jorge Bondía
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 107968-107968 被引量:2
标识
DOI:10.1016/j.cmpb.2023.107968
摘要

Pramlintide, an amylin analog, has been coming up as an agent in type 1 diabetes dual-hormone therapies (insulin/pramlintide). Since pramlintide slows down gastric emptying, it allows for easing glucose control and reducing the burden of meal announcements. Pre-clinical in silico evaluations are a key step in the development of any closed-loop strategy. However, mathematical models are needed, and pramlintide models in the literature are scarce. This work proposes a proof-of-concept pramlintide model, describing its subcutaneous pharmacokinetics (PK) and its effect on gastric emptying (PD). The model is validated with published populational (clinical) data. The model development is divided into three stages: intravenous PK, subcutaneous PK, and PD modeling. In each stage, a set of model structures are proposed, and their performance is assessed using the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). In order to evaluate the modulation of the rate of gastric emptying, a literature meal model was used. The final pramlintide model comprises four compartments and a function that modulates gastric emptying depending on plasma pramlintide. Results show an appropriate fit for the data. Some aspects are left as open questions due to the lack of specific data (e.g., the influence of meal composition on the pramlintide effect). Moreover, further validation with individual data is necessary to propose a virtual cohort of patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜的若枫完成签到,获得积分10
1秒前
田様应助让地球种满香菜采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
彭于晏应助金江客死采纳,获得10
2秒前
3秒前
3秒前
3秒前
BowieHuang应助香菜丸子采纳,获得10
4秒前
4秒前
5秒前
活力白竹完成签到,获得积分10
5秒前
EV完成签到,获得积分10
5秒前
蟹黄味发布了新的文献求助10
5秒前
清蒸鱼发布了新的文献求助30
5秒前
谨慎的白秋完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
zzx完成签到,获得积分10
6秒前
6秒前
6秒前
坚定的向雪完成签到,获得积分10
6秒前
自信雨安发布了新的文献求助10
7秒前
tang1发布了新的文献求助10
7秒前
8秒前
稳重口红发布了新的文献求助10
8秒前
欣欣向荣发布了新的文献求助10
9秒前
9秒前
义气丹雪应助李剑鸿采纳,获得100
9秒前
9秒前
ww发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助30
9秒前
小马甲应助王HH采纳,获得10
10秒前
小徐发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719050
求助须知:如何正确求助?哪些是违规求助? 5254852
关于积分的说明 15287660
捐赠科研通 4869006
什么是DOI,文献DOI怎么找? 2614559
邀请新用户注册赠送积分活动 1564435
关于科研通互助平台的介绍 1521807