作者
David Ouyang,John Theurer,Nathan R. Stein,J. Weston Hughes,Pierre Elias,Bryan He,Neal Yuan,Grant Duffy,Roopinder K. Sandhu,Joseph E. Ebinger,Patrick Botting,Melvin Jujjavarapu,Brian Claggett,James Tooley,Tim Poterucha,Jonathan Chen,Michael Nurok,Marco Perez,Adler Perotte,James Zou,Nancy R. Cook,Sumeet S. Chugh,Susan Cheng,Christine M. Albert
摘要
BackgroundPreoperative risk assessments used in clinical practice are insufficient in their ability to identify risk for postoperative mortality. Deep-learning analysis of electrocardiography can identify hidden risk markers that can help to prognosticate postoperative mortality. We aimed to develop a prognostic model that accurately predicts postoperative mortality in patients undergoing medical procedures and who had received preoperative electrocardiographic diagnostic testing.MethodsIn a derivation cohort of preoperative patients with available electrocardiograms (ECGs) from Cedars-Sinai Medical Center (Los Angeles, CA, USA) between Jan 1, 2015 and Dec 31, 2019, a deep-learning algorithm was developed to leverage waveform signals to discriminate postoperative mortality. We randomly split patients (8:1:1) into subsets for training, internal validation, and final algorithm test analyses. Model performance was assessed using area under the receiver operating characteristic curve (AUC) values in the hold-out test dataset and in two external hospital cohorts and compared with the established Revised Cardiac Risk Index (RCRI) score. The primary outcome was post-procedural mortality across three health-care systems.Findings45 969 patients had a complete ECG waveform image available for at least one 12-lead ECG performed within the 30 days before the procedure date (59 975 inpatient procedures and 112 794 ECGs): 36 839 patients in the training dataset, 4549 in the internal validation dataset, and 4581 in the internal test dataset. In the held-out internal test cohort, the algorithm discriminates mortality with an AUC value of 0·83 (95% CI 0·79–0·87), surpassing the discrimination of the RCRI score with an AUC of 0·67 (0·61–0·72). The algorithm similarly discriminated risk for mortality in two independent US health-care systems, with AUCs of 0·79 (0·75–0·83) and 0·75 (0·74–0·76), respectively. Patients determined to be high risk by the deep-learning model had an unadjusted odds ratio (OR) of 8·83 (5·57–13·20) for postoperative mortality compared with an unadjusted OR of 2·08 (0·77–3·50) for postoperative mortality for RCRI scores of more than 2. The deep-learning algorithm performed similarly for patients undergoing cardiac surgery (AUC 0·85 [0·77–0·92]), non-cardiac surgery (AUC 0·83 [0·79–0·88]), and catheterisation or endoscopy suite procedures (AUC 0·76 [0·72–0·81]).InterpretationA deep-learning algorithm interpreting preoperative ECGs can improve discrimination of postoperative mortality. The deep-learning algorithm worked equally well for risk stratification of cardiac surgeries, non-cardiac surgeries, and catheterisation laboratory procedures, and was validated in three independent health-care systems. This algorithm can provide additional information to clinicians making the decision to perform medical procedures and stratify the risk of future complications.FundingNational Heart, Lung, and Blood Institute.