Electrocardiographic deep learning for predicting post-procedural mortality: a model development and validation study

深度学习 人工智能 计算机科学
作者
David Ouyang,John Theurer,Nathan R. Stein,J. Weston Hughes,Pierre Elias,Bryan He,Neal Yuan,Grant Duffy,Roopinder K. Sandhu,Joseph E. Ebinger,Patrick Botting,Melvin Jujjavarapu,Brian Claggett,James Tooley,Tim Poterucha,Jonathan Chen,Michael Nurok,Marco Perez,Adler Perotte,James Zou,Nancy R. Cook,Sumeet S. Chugh,Susan Cheng,Christine M. Albert
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:6 (1): e70-e78 被引量:14
标识
DOI:10.1016/s2589-7500(23)00220-0
摘要

BackgroundPreoperative risk assessments used in clinical practice are insufficient in their ability to identify risk for postoperative mortality. Deep-learning analysis of electrocardiography can identify hidden risk markers that can help to prognosticate postoperative mortality. We aimed to develop a prognostic model that accurately predicts postoperative mortality in patients undergoing medical procedures and who had received preoperative electrocardiographic diagnostic testing.MethodsIn a derivation cohort of preoperative patients with available electrocardiograms (ECGs) from Cedars-Sinai Medical Center (Los Angeles, CA, USA) between Jan 1, 2015 and Dec 31, 2019, a deep-learning algorithm was developed to leverage waveform signals to discriminate postoperative mortality. We randomly split patients (8:1:1) into subsets for training, internal validation, and final algorithm test analyses. Model performance was assessed using area under the receiver operating characteristic curve (AUC) values in the hold-out test dataset and in two external hospital cohorts and compared with the established Revised Cardiac Risk Index (RCRI) score. The primary outcome was post-procedural mortality across three health-care systems.Findings45 969 patients had a complete ECG waveform image available for at least one 12-lead ECG performed within the 30 days before the procedure date (59 975 inpatient procedures and 112 794 ECGs): 36 839 patients in the training dataset, 4549 in the internal validation dataset, and 4581 in the internal test dataset. In the held-out internal test cohort, the algorithm discriminates mortality with an AUC value of 0·83 (95% CI 0·79–0·87), surpassing the discrimination of the RCRI score with an AUC of 0·67 (0·61–0·72). The algorithm similarly discriminated risk for mortality in two independent US health-care systems, with AUCs of 0·79 (0·75–0·83) and 0·75 (0·74–0·76), respectively. Patients determined to be high risk by the deep-learning model had an unadjusted odds ratio (OR) of 8·83 (5·57–13·20) for postoperative mortality compared with an unadjusted OR of 2·08 (0·77–3·50) for postoperative mortality for RCRI scores of more than 2. The deep-learning algorithm performed similarly for patients undergoing cardiac surgery (AUC 0·85 [0·77–0·92]), non-cardiac surgery (AUC 0·83 [0·79–0·88]), and catheterisation or endoscopy suite procedures (AUC 0·76 [0·72–0·81]).InterpretationA deep-learning algorithm interpreting preoperative ECGs can improve discrimination of postoperative mortality. The deep-learning algorithm worked equally well for risk stratification of cardiac surgeries, non-cardiac surgeries, and catheterisation laboratory procedures, and was validated in three independent health-care systems. This algorithm can provide additional information to clinicians making the decision to perform medical procedures and stratify the risk of future complications.FundingNational Heart, Lung, and Blood Institute.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三颗石头完成签到,获得积分10
4秒前
nusiew完成签到,获得积分10
8秒前
naohai完成签到,获得积分10
9秒前
维维完成签到 ,获得积分10
17秒前
轩辕剑身完成签到,获得积分0
22秒前
wtt完成签到 ,获得积分10
26秒前
英喆完成签到 ,获得积分10
28秒前
积极盼山完成签到 ,获得积分10
32秒前
hebhm完成签到,获得积分10
32秒前
呼君伟完成签到 ,获得积分10
36秒前
土豪的灵竹完成签到 ,获得积分10
42秒前
玲家傻妞完成签到 ,获得积分10
50秒前
小梦完成签到,获得积分10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
oracl完成签到 ,获得积分10
1分钟前
1分钟前
泥娃娃完成签到 ,获得积分10
1分钟前
1分钟前
哭泣的如豹完成签到,获得积分10
1分钟前
sherry完成签到 ,获得积分10
1分钟前
睡到人间煮饭时完成签到 ,获得积分10
1分钟前
林夕完成签到 ,获得积分10
1分钟前
ivy完成签到 ,获得积分10
1分钟前
gk完成签到,获得积分10
1分钟前
鬼见愁应助淡然语山采纳,获得20
1分钟前
当女遇到乔完成签到 ,获得积分10
2分钟前
小杨完成签到 ,获得积分10
2分钟前
hakuna_matata完成签到 ,获得积分10
2分钟前
腾腾完成签到 ,获得积分10
2分钟前
调皮的蓝天完成签到 ,获得积分10
2分钟前
弹剑作歌完成签到,获得积分10
2分钟前
CLTTTt完成签到,获得积分10
2分钟前
会发芽完成签到 ,获得积分10
2分钟前
六等于三二一完成签到 ,获得积分10
2分钟前
2分钟前
哭泣的如豹发布了新的文献求助100
2分钟前
岁月间完成签到,获得积分10
2分钟前
高文强完成签到,获得积分10
2分钟前
博林大师完成签到,获得积分10
2分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139648
求助须知:如何正确求助?哪些是违规求助? 2790514
关于积分的说明 7795518
捐赠科研通 2446980
什么是DOI,文献DOI怎么找? 1301543
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176