热失控
电解质
电池(电)
电极
锂(药物)
尖晶石
材料科学
热分解
锂离子电池
化学工程
离子
石墨
复合材料
化学
冶金
热力学
物理化学
工程类
功率(物理)
有机化学
内分泌学
物理
医学
作者
Tengfei He,Siddharth Gadkari,Teng Zhang,Zhirong Wang,Jialong Liu,Ning Mao,Jinlong Bai,Qiong Cai
标识
DOI:10.1016/j.jclepro.2023.140548
摘要
This study delves into the critical safety issue of thermal runaway (TR) in lithium-ion batteries (LIBs), particularly focusing on the physical and chemical changes occurring in the electrode materials during temperature escalation. We investigate a commercial 18650 type 2.6 Ah Li[Ni5Co2Mn3]O2/graphite battery, tracing changes from room temperature to the point of TR. Our findings reveal that the negative electrode experiences gradual decomposition and regeneration of the solid electrolyte interface (SEI) film, reacting with the electrolyte to form compounds such as Li2CO3 and LiF on its surface. Similarly, the positive electrode also generates Li2CO3 on its surface as temperature rises. Notably, at 185 °C, there is a partial disintegration of the positive electrode particles, accompanied by a structural transformation from the LiMO2 (M representing Ni, Co, and Mn) R-3m layered structure to a disordered spinel LiM2O4. This research contributes to a deeper understanding of the TR mechanism in LIBs, offering valuable insights for material researchers in designing safer battery systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI