Full-flow surface defect identification method based on spot scanning scattering for unpatterned wafer

薄脆饼 材料科学 计算机科学 人工智能 光电子学
作者
Dingjun Qu,Zuoda Zhou,Zhiwei Li,Ruizhe Ding,Wei Jin,Yu Ru,Haiyan Luo,Wei Xiong
出处
期刊:Journal of Instrumentation [IOP Publishing]
卷期号:19 (01): P01006-P01006 被引量:1
标识
DOI:10.1088/1748-0221/19/01/p01006
摘要

Abstract As the critical dimensions of semiconductor manufacturing processes gradually decrease, the requirements for production yield management become increasingly stringent. During the manufacturing process, there are many different types of defects, such as micron-sized particles, millimeter-sized scratches, etc. Multiple categories and different scales bring great challenges to the detection and identification of defects. This paper provides a full-flow surface defect identification method based on spot scanning scattering for unpatterned wafers. First, an adaptive threshold method with dynamic kernel windows is used to perform line-by-line scanning inspection of the wafer Mercator image. The 3σ decision strategy is used to avoid the impact of defects on background estimation and to improve detection sensitivity. After morphological processing, connected domain analysis is performed to obtain the defect mask, and feature information such as the shape, size, and distribution of the defect is extracted. Finally, the defect identification is performed by rules based binning, and the identified defects are converted into wafer polar coordinate image for display and analysis. In the experiments, the proposed method is used to identify micron-scale particles as well as large scratches on the millimeter scale for SiC wafers. Relative to the actual production rate requirement of 20 wafers per hour, the analysis time for a 6-inch wafer is 24.4 s, which can meet the requirement. Meanwhile, the test results illustrate the effectiveness of the method. The proposed method is recommended for early-stage defect detection and identification of unpatterned wafers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑点低的铁身完成签到 ,获得积分10
1秒前
1秒前
1秒前
小二郎应助wuxunxun2015采纳,获得10
2秒前
俏皮的老三完成签到 ,获得积分10
3秒前
YHT发布了新的文献求助10
3秒前
4秒前
开放依琴完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
英俊的铭应助岁月静好采纳,获得10
5秒前
体贴绝音发布了新的文献求助10
5秒前
5秒前
Hello应助Jackie_Chan采纳,获得10
5秒前
5秒前
5秒前
小恐龙发布了新的文献求助10
5秒前
6秒前
liujie666发布了新的文献求助10
6秒前
6秒前
芝士发布了新的文献求助10
7秒前
7秒前
zino完成签到,获得积分10
7秒前
科研通AI6应助漂亮的大神采纳,获得10
7秒前
7秒前
SR发布了新的文献求助10
7秒前
青山发布了新的文献求助10
7秒前
英俊的念寒完成签到,获得积分10
7秒前
7秒前
8秒前
Dreamer.发布了新的文献求助10
8秒前
小吉麻麻完成签到,获得积分10
8秒前
YHT完成签到,获得积分10
8秒前
9秒前
852应助大写的笨采纳,获得10
9秒前
FYX发布了新的文献求助10
9秒前
星辰大海应助沙拉酱采纳,获得10
10秒前
10秒前
海鸥完成签到,获得积分10
10秒前
hohokuz发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645714
求助须知:如何正确求助?哪些是违规求助? 4769624
关于积分的说明 15031726
捐赠科研通 4804481
什么是DOI,文献DOI怎么找? 2569019
邀请新用户注册赠送积分活动 1526095
关于科研通互助平台的介绍 1485700