Full-flow surface defect identification method based on spot scanning scattering for unpatterned wafer

薄脆饼 材料科学 计算机科学 人工智能 光电子学
作者
Dingjun Qu,Zuoda Zhou,Zhiwei Li,Ruizhe Ding,Wei Jin,Yu Ru,Haiyan Luo,Wei Xiong
出处
期刊:Journal of Instrumentation [Institute of Physics]
卷期号:19 (01): P01006-P01006 被引量:1
标识
DOI:10.1088/1748-0221/19/01/p01006
摘要

Abstract As the critical dimensions of semiconductor manufacturing processes gradually decrease, the requirements for production yield management become increasingly stringent. During the manufacturing process, there are many different types of defects, such as micron-sized particles, millimeter-sized scratches, etc. Multiple categories and different scales bring great challenges to the detection and identification of defects. This paper provides a full-flow surface defect identification method based on spot scanning scattering for unpatterned wafers. First, an adaptive threshold method with dynamic kernel windows is used to perform line-by-line scanning inspection of the wafer Mercator image. The 3σ decision strategy is used to avoid the impact of defects on background estimation and to improve detection sensitivity. After morphological processing, connected domain analysis is performed to obtain the defect mask, and feature information such as the shape, size, and distribution of the defect is extracted. Finally, the defect identification is performed by rules based binning, and the identified defects are converted into wafer polar coordinate image for display and analysis. In the experiments, the proposed method is used to identify micron-scale particles as well as large scratches on the millimeter scale for SiC wafers. Relative to the actual production rate requirement of 20 wafers per hour, the analysis time for a 6-inch wafer is 24.4 s, which can meet the requirement. Meanwhile, the test results illustrate the effectiveness of the method. The proposed method is recommended for early-stage defect detection and identification of unpatterned wafers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ao完成签到,获得积分10
1秒前
1秒前
吱吱完成签到 ,获得积分10
1秒前
SciGPT应助巷陌巾采纳,获得10
2秒前
多情的灵安完成签到,获得积分10
3秒前
独享发布了新的文献求助10
4秒前
耀学菜菜发布了新的文献求助10
4秒前
轩辕寄风完成签到,获得积分0
4秒前
刘仁轨完成签到,获得积分10
5秒前
路寻完成签到,获得积分10
6秒前
DVD发布了新的文献求助10
6秒前
扶苏发布了新的文献求助10
6秒前
温两两完成签到,获得积分10
7秒前
传奇3应助嘟嘟可采纳,获得10
7秒前
健忘过客完成签到 ,获得积分10
7秒前
小石头完成签到,获得积分10
7秒前
李德胜完成签到,获得积分10
7秒前
丰富的微笑完成签到,获得积分10
8秒前
dragonking520发布了新的文献求助10
8秒前
9秒前
xxlbp发布了新的文献求助10
9秒前
三千港完成签到,获得积分10
10秒前
Lucas应助脑残骑士老张采纳,获得10
10秒前
Distance发布了新的文献求助10
10秒前
10秒前
zw完成签到,获得积分10
10秒前
iW完成签到 ,获得积分10
11秒前
笨笨十三完成签到 ,获得积分0
11秒前
13秒前
小麦完成签到,获得积分10
13秒前
shin0324完成签到,获得积分10
13秒前
清新的战斗机完成签到 ,获得积分10
13秒前
悲凉的冬天完成签到 ,获得积分10
14秒前
荀幼旋发布了新的文献求助10
14秒前
14秒前
火火完成签到,获得积分10
14秒前
Danny完成签到,获得积分10
14秒前
爱笑的开山完成签到,获得积分10
14秒前
2025顺顺利利完成签到 ,获得积分10
14秒前
zw发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950291
求助须知:如何正确求助?哪些是违规求助? 3495773
关于积分的说明 11078786
捐赠科研通 3226217
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800904