Full-flow surface defect identification method based on spot scanning scattering for unpatterned wafer

薄脆饼 材料科学 计算机科学 人工智能 光电子学
作者
Dingjun Qu,Zuoda Zhou,Zhiwei Li,Ruizhe Ding,Wei Jin,Yu Ru,Haiyan Luo,Wei Xiong
出处
期刊:Journal of Instrumentation [IOP Publishing]
卷期号:19 (01): P01006-P01006 被引量:1
标识
DOI:10.1088/1748-0221/19/01/p01006
摘要

Abstract As the critical dimensions of semiconductor manufacturing processes gradually decrease, the requirements for production yield management become increasingly stringent. During the manufacturing process, there are many different types of defects, such as micron-sized particles, millimeter-sized scratches, etc. Multiple categories and different scales bring great challenges to the detection and identification of defects. This paper provides a full-flow surface defect identification method based on spot scanning scattering for unpatterned wafers. First, an adaptive threshold method with dynamic kernel windows is used to perform line-by-line scanning inspection of the wafer Mercator image. The 3σ decision strategy is used to avoid the impact of defects on background estimation and to improve detection sensitivity. After morphological processing, connected domain analysis is performed to obtain the defect mask, and feature information such as the shape, size, and distribution of the defect is extracted. Finally, the defect identification is performed by rules based binning, and the identified defects are converted into wafer polar coordinate image for display and analysis. In the experiments, the proposed method is used to identify micron-scale particles as well as large scratches on the millimeter scale for SiC wafers. Relative to the actual production rate requirement of 20 wafers per hour, the analysis time for a 6-inch wafer is 24.4 s, which can meet the requirement. Meanwhile, the test results illustrate the effectiveness of the method. The proposed method is recommended for early-stage defect detection and identification of unpatterned wafers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiuqiu完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
华仔应助李昶采纳,获得10
5秒前
科研人发布了新的文献求助10
5秒前
5秒前
领导范儿应助lotus采纳,获得10
6秒前
小太阳完成签到,获得积分10
6秒前
6秒前
jerry发布了新的文献求助10
8秒前
xm发布了新的文献求助30
8秒前
Meteor发布了新的文献求助10
8秒前
豆芽菜发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
七海老祖完成签到,获得积分10
10秒前
英姑应助英勇海采纳,获得10
11秒前
整齐香岚完成签到 ,获得积分10
12秒前
12秒前
科研人完成签到,获得积分10
13秒前
14秒前
Yewei_Xiao发布了新的文献求助10
14秒前
16秒前
黎子发布了新的文献求助10
17秒前
ding应助xm采纳,获得10
18秒前
Meteor完成签到,获得积分10
18秒前
Xiaosi完成签到,获得积分10
18秒前
19秒前
杨榆藤完成签到,获得积分10
19秒前
黄先生完成签到,获得积分20
19秒前
李昶发布了新的文献求助10
19秒前
吹风机发布了新的文献求助10
20秒前
67n发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775036
求助须知:如何正确求助?哪些是违规求助? 5621513
关于积分的说明 15437389
捐赠科研通 4907483
什么是DOI,文献DOI怎么找? 2640665
邀请新用户注册赠送积分活动 1588560
关于科研通互助平台的介绍 1543434