已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Full-flow surface defect identification method based on spot scanning scattering for unpatterned wafer

薄脆饼 材料科学 计算机科学 人工智能 光电子学
作者
Dingjun Qu,Zuoda Zhou,Zhiwei Li,Ruizhe Ding,Wei Jin,Yu Ru,Haiyan Luo,Wei Xiong
出处
期刊:Journal of Instrumentation [IOP Publishing]
卷期号:19 (01): P01006-P01006 被引量:1
标识
DOI:10.1088/1748-0221/19/01/p01006
摘要

Abstract As the critical dimensions of semiconductor manufacturing processes gradually decrease, the requirements for production yield management become increasingly stringent. During the manufacturing process, there are many different types of defects, such as micron-sized particles, millimeter-sized scratches, etc. Multiple categories and different scales bring great challenges to the detection and identification of defects. This paper provides a full-flow surface defect identification method based on spot scanning scattering for unpatterned wafers. First, an adaptive threshold method with dynamic kernel windows is used to perform line-by-line scanning inspection of the wafer Mercator image. The 3σ decision strategy is used to avoid the impact of defects on background estimation and to improve detection sensitivity. After morphological processing, connected domain analysis is performed to obtain the defect mask, and feature information such as the shape, size, and distribution of the defect is extracted. Finally, the defect identification is performed by rules based binning, and the identified defects are converted into wafer polar coordinate image for display and analysis. In the experiments, the proposed method is used to identify micron-scale particles as well as large scratches on the millimeter scale for SiC wafers. Relative to the actual production rate requirement of 20 wafers per hour, the analysis time for a 6-inch wafer is 24.4 s, which can meet the requirement. Meanwhile, the test results illustrate the effectiveness of the method. The proposed method is recommended for early-stage defect detection and identification of unpatterned wafers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
风行域完成签到,获得积分10
3秒前
Monicadd完成签到 ,获得积分10
5秒前
yuanyuan发布了新的文献求助10
6秒前
月冷完成签到 ,获得积分10
7秒前
刀特左发布了新的文献求助10
7秒前
8秒前
学习使勇哥进步完成签到,获得积分10
11秒前
11秒前
研友_8y29gL完成签到,获得积分10
11秒前
我是老大应助yingtao采纳,获得10
12秒前
14秒前
somnus完成签到,获得积分10
14秒前
思源应助何叶采纳,获得10
16秒前
满意妙梦发布了新的文献求助10
16秒前
Summer完成签到 ,获得积分10
17秒前
syanxxxx发布了新的文献求助30
18秒前
yy完成签到,获得积分10
18秒前
yy发布了新的文献求助10
21秒前
23秒前
blackddl完成签到,获得积分0
24秒前
魔幻冰棍完成签到 ,获得积分10
26秒前
Yuki完成签到 ,获得积分10
26秒前
默默襄完成签到 ,获得积分10
29秒前
何叶发布了新的文献求助10
29秒前
626发布了新的文献求助10
33秒前
34秒前
35秒前
敞敞亮亮完成签到 ,获得积分10
36秒前
谨慎山槐完成签到 ,获得积分10
38秒前
体贴代容发布了新的文献求助30
39秒前
娜娜子完成签到 ,获得积分10
40秒前
踏实的哑铃完成签到,获得积分10
40秒前
44秒前
syanxxxx完成签到,获得积分10
46秒前
酷波er应助小橘子采纳,获得10
46秒前
落寞飞烟完成签到,获得积分10
46秒前
情怀应助随机应变采纳,获得10
46秒前
俊逸吐司完成签到 ,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599548
求助须知:如何正确求助?哪些是违规求助? 4685229
关于积分的说明 14838214
捐赠科研通 4669062
什么是DOI,文献DOI怎么找? 2538076
邀请新用户注册赠送积分活动 1505449
关于科研通互助平台的介绍 1470833