亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Full-flow surface defect identification method based on spot scanning scattering for unpatterned wafer

薄脆饼 材料科学 计算机科学 人工智能 光电子学
作者
Dingjun Qu,Zuoda Zhou,Zhiwei Li,Ruizhe Ding,Wei Jin,Yu Ru,Haiyan Luo,Wei Xiong
出处
期刊:Journal of Instrumentation [IOP Publishing]
卷期号:19 (01): P01006-P01006 被引量:1
标识
DOI:10.1088/1748-0221/19/01/p01006
摘要

Abstract As the critical dimensions of semiconductor manufacturing processes gradually decrease, the requirements for production yield management become increasingly stringent. During the manufacturing process, there are many different types of defects, such as micron-sized particles, millimeter-sized scratches, etc. Multiple categories and different scales bring great challenges to the detection and identification of defects. This paper provides a full-flow surface defect identification method based on spot scanning scattering for unpatterned wafers. First, an adaptive threshold method with dynamic kernel windows is used to perform line-by-line scanning inspection of the wafer Mercator image. The 3σ decision strategy is used to avoid the impact of defects on background estimation and to improve detection sensitivity. After morphological processing, connected domain analysis is performed to obtain the defect mask, and feature information such as the shape, size, and distribution of the defect is extracted. Finally, the defect identification is performed by rules based binning, and the identified defects are converted into wafer polar coordinate image for display and analysis. In the experiments, the proposed method is used to identify micron-scale particles as well as large scratches on the millimeter scale for SiC wafers. Relative to the actual production rate requirement of 20 wafers per hour, the analysis time for a 6-inch wafer is 24.4 s, which can meet the requirement. Meanwhile, the test results illustrate the effectiveness of the method. The proposed method is recommended for early-stage defect detection and identification of unpatterned wafers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中柔发布了新的文献求助10
5秒前
5秒前
三月兔发布了新的文献求助10
10秒前
乐观的西装完成签到,获得积分10
30秒前
三月兔完成签到,获得积分10
37秒前
风中柔关注了科研通微信公众号
45秒前
54秒前
大志发布了新的文献求助10
56秒前
59秒前
dawn发布了新的文献求助10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
dawn完成签到,获得积分10
1分钟前
1分钟前
herococa完成签到,获得积分0
1分钟前
1分钟前
坚强的秋白完成签到,获得积分10
1分钟前
dong发布了新的文献求助10
1分钟前
科研通AI6应助lj采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
bkagyin应助LukeLion采纳,获得10
2分钟前
完美世界应助LukeLion采纳,获得10
2分钟前
11发布了新的文献求助10
2分钟前
2分钟前
无花果应助LukeLion采纳,获得10
2分钟前
2分钟前
沐兮完成签到 ,获得积分10
2分钟前
2分钟前
爆米花应助LukeLion采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
华仔应助LukeLion采纳,获得10
3分钟前
3分钟前
英俊的铭应助LukeLion采纳,获得10
3分钟前
11发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522699
求助须知:如何正确求助?哪些是违规求助? 4613657
关于积分的说明 14539118
捐赠科研通 4551368
什么是DOI,文献DOI怎么找? 2494224
邀请新用户注册赠送积分活动 1475142
关于科研通互助平台的介绍 1446542