Enhanced Efficiency InGaN/GaN Multiple Quantum Well Structures via Strain Engineering and Ultrathin Subwells Formed by V-Pit Sidewalls

阴极发光 材料科学 光致发光 超晶格 量子阱 扫描电子显微镜 互易晶格 光电子学 化学气相沉积 蓝宝石 金属有机气相外延 透射电子显微镜 位错 衍射 发光 纳米技术 光学 图层(电子) 外延 复合材料 激光器 物理
作者
Fatimah Alreshidi,Lih-Ren Chen,Mohammed A. Najmi,Bin Xin,Hadeel Alamoudi,Georgian Melinte,Nimer Wehbe,Daisuke Iida,Kazuhiro Ohkawa,Tien‐Chang Lu,Iman S. Roqan
标识
DOI:10.1021/acsaom.3c00406
摘要

We study the impact of strain engineering by exploring the influence of the number of superlattice (SL) layers underneath InGaN/GaN multiple quantum wells (MQWs) on the optical properties of InxGa1–xN/GaN MQWs grown on patterned sapphire by metal–organic chemical vapor deposition while retaining the same composition and MQW periods. X-ray diffraction and reciprocal space mapping show that the strain initially increases with the number of SLs in the structure followed by a slight relaxation. Scanning electron microscopy analysis indicates that the desired strain is obtained by increasing the number of SL pairs up to 12 due to which the V-pit density and size (>270 nm in diameter) increase. Scanning transmission electron microscopy reveals that such large-sized V-pits [with large sidewalls comprising ultrathin MQWs and SLs (<1 nm)] emerge in the n-GaN layer below the SLs, leading to high n-GaN quality as confirmed by temperature-dependent photoluminescence (PL) and PL excitation measurements as defect-related emission in n-GaN decreases as the V-pit density increases. Low-temperature PL spectra show a higher-energy emission centered at 402 nm besides the MQW emission at ∼454–458 nm, while room-temperature cathodoluminescence mapping reveals that this higher-energy emission is due to the ultrathin MQW + SL structures surrounding V-pits, forming ultrathin subquantum well (sub-QW). We show, for the first time, that the carrier repopulation process between MQWs and sub-QW caused by a high density of V-pits through the strain engineering process can be a significant factor in enhancing the optical quality and efficiency. These findings provide valuable insight into the impact of strain engineering that can govern high-efficiency light-emitting diode (LED) performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助hanscao采纳,获得30
刚刚
华国锋完成签到,获得积分10
刚刚
UU发布了新的文献求助10
刚刚
vivianfou发布了新的文献求助10
1秒前
1秒前
oooo发布了新的文献求助10
2秒前
2秒前
2秒前
可爱的函函应助fagfagsf采纳,获得10
2秒前
2秒前
打打应助kdkddk采纳,获得10
3秒前
坚强擎汉发布了新的文献求助10
3秒前
科研通AI5应助丽Li采纳,获得10
3秒前
3秒前
FashionBoy应助gpy采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得80
4秒前
4秒前
隐形曼青应助科研通管家采纳,获得20
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
2222233发布了新的文献求助10
4秒前
田様应助科研通管家采纳,获得10
4秒前
严怜梦完成签到 ,获得积分10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
Owen应助123456采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
Bowingyang应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
6秒前
情怀应助科研通管家采纳,获得10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559313
求助须知:如何正确求助?哪些是违规求助? 3133962
关于积分的说明 9404827
捐赠科研通 2834076
什么是DOI,文献DOI怎么找? 1557790
邀请新用户注册赠送积分活动 727704
科研通“疑难数据库(出版商)”最低求助积分说明 716399