Enhanced Efficiency InGaN/GaN Multiple Quantum Well Structures via Strain Engineering and Ultrathin Subwells Formed by V-Pit Sidewalls

阴极发光 材料科学 光致发光 超晶格 量子阱 扫描电子显微镜 互易晶格 光电子学 化学气相沉积 蓝宝石 金属有机气相外延 透射电子显微镜 位错 衍射 发光 纳米技术 光学 图层(电子) 外延 复合材料 激光器 物理
作者
Fatimah Alreshidi,Lih-Ren Chen,Mohammed A. Najmi,Bin Xin,Hadeel Alamoudi,Georgian Melinte,Nimer Wehbe,Daisuke Iida,Kazuhiro Ohkawa,Tien‐Chang Lu,Iman S. Roqan
标识
DOI:10.1021/acsaom.3c00406
摘要

We study the impact of strain engineering by exploring the influence of the number of superlattice (SL) layers underneath InGaN/GaN multiple quantum wells (MQWs) on the optical properties of InxGa1–xN/GaN MQWs grown on patterned sapphire by metal–organic chemical vapor deposition while retaining the same composition and MQW periods. X-ray diffraction and reciprocal space mapping show that the strain initially increases with the number of SLs in the structure followed by a slight relaxation. Scanning electron microscopy analysis indicates that the desired strain is obtained by increasing the number of SL pairs up to 12 due to which the V-pit density and size (>270 nm in diameter) increase. Scanning transmission electron microscopy reveals that such large-sized V-pits [with large sidewalls comprising ultrathin MQWs and SLs (<1 nm)] emerge in the n-GaN layer below the SLs, leading to high n-GaN quality as confirmed by temperature-dependent photoluminescence (PL) and PL excitation measurements as defect-related emission in n-GaN decreases as the V-pit density increases. Low-temperature PL spectra show a higher-energy emission centered at 402 nm besides the MQW emission at ∼454–458 nm, while room-temperature cathodoluminescence mapping reveals that this higher-energy emission is due to the ultrathin MQW + SL structures surrounding V-pits, forming ultrathin subquantum well (sub-QW). We show, for the first time, that the carrier repopulation process between MQWs and sub-QW caused by a high density of V-pits through the strain engineering process can be a significant factor in enhancing the optical quality and efficiency. These findings provide valuable insight into the impact of strain engineering that can govern high-efficiency light-emitting diode (LED) performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
wq完成签到,获得积分10
1秒前
张潇潇发布了新的文献求助10
2秒前
李健应助苏小寰采纳,获得10
3秒前
华仔应助科西西采纳,获得10
3秒前
4秒前
sparks完成签到,获得积分10
8秒前
情怀应助lunlun采纳,获得30
8秒前
科目三应助Hexagram采纳,获得10
8秒前
喵咕嘟发布了新的文献求助10
8秒前
焦立超发布了新的文献求助10
10秒前
111完成签到,获得积分20
11秒前
负责浩宇完成签到,获得积分10
11秒前
默默紊发布了新的文献求助10
12秒前
15秒前
杨123完成签到,获得积分10
16秒前
Sid给屈绮兰的求助进行了留言
16秒前
SYLH应助北城采纳,获得20
19秒前
池池发布了新的文献求助10
19秒前
曲奇饼干应助焦立超采纳,获得10
22秒前
23秒前
思源应助科研通管家采纳,获得10
23秒前
小马甲应助科研通管家采纳,获得10
23秒前
李爱国应助科研通管家采纳,获得10
23秒前
充电宝应助科研通管家采纳,获得10
23秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
23秒前
风清扬应助科研通管家采纳,获得10
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
传奇3应助科研通管家采纳,获得10
24秒前
CipherSage应助科研通管家采纳,获得10
24秒前
华仔应助科研通管家采纳,获得10
24秒前
ll应助科研通管家采纳,获得10
24秒前
我是老大应助科研通管家采纳,获得10
24秒前
SYLH应助科研通管家采纳,获得10
24秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979896
求助须知:如何正确求助?哪些是违规求助? 3523949
关于积分的说明 11219166
捐赠科研通 3261387
什么是DOI,文献DOI怎么找? 1800629
邀请新用户注册赠送积分活动 879209
科研通“疑难数据库(出版商)”最低求助积分说明 807202