Optical manipulation reveals macrophage mediated mesoscale brain mechanical homeostasisin vivo

间质细胞 体内 巨噬细胞 神经科学 材料科学 生物 病理 医学 体外 生物化学 生物技术
作者
Woong Young So,Bailey Johnson,Patricia B. Gordon,Kevin Bishop,Haihong Gong,Hannah A. Burr,Jack R. Staunton,Chenchen Handler,Raman Sood,Giuliano Scarcelli,Kandice Tanner
标识
DOI:10.1101/2023.12.27.573380
摘要

Abstract Tissues are active materials where epithelial turnover, immune surveillance, and remodeling of stromal cells such as macrophages all regulate form and function. Scattering modalities such as Brillouin microscopy (BM) can non-invasively access mechanical signatures at GHz. However, our traditional understanding of tissue material properties is derived mainly from modalities which probe mechanical properties at different frequencies. Thus, reconciling measurements amongst these modalities remains an active area. Here, we compare optical tweezer active microrheology (OT-AMR) and Brillouin microscopy (BM) to longitudinally map brain development in the larval zebrafish. We determine that each measurement is able to detect a mechanical signature linked to functional units of the brain. We demonstrate that the corrected BM-Longitudinal modulus using a density factor correlates well with OT-AMR storage modulus at lower frequencies. We also show that the brain tissue mechanical properties are dependent on both the neuronal architecture and the presence of macrophages. Moreover, the BM technique is able to delineate the contributions to mechanical properties of the macrophage from that due to colony stimulating factor 1 receptor (CSF1R) mediated stromal remodeling. Here, our data suggest that macrophage remodeling is instrumental in the maintenance of tissue mechanical homeostasis during development. Moreover, the strong agreement between the OT-AM and BM further demonstrates that scattering-based technique is sensitive to both large and minute structural modification in vivo .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助bxdrl采纳,获得10
1秒前
1秒前
2秒前
dlw完成签到,获得积分10
2秒前
小苏完成签到 ,获得积分10
2秒前
了一李发布了新的文献求助30
3秒前
3秒前
4秒前
果果完成签到,获得积分10
4秒前
无情墨镜完成签到,获得积分10
4秒前
5秒前
5秒前
李健应助科研废物采纳,获得10
5秒前
FIN发布了新的文献求助500
7秒前
7秒前
lmz发布了新的文献求助10
7秒前
alunying发布了新的文献求助20
8秒前
Iris发布了新的文献求助10
8秒前
8秒前
90发布了新的文献求助10
9秒前
Criminology34应助无情墨镜采纳,获得10
9秒前
科研通AI6应助芝士采纳,获得10
10秒前
fff完成签到,获得积分10
10秒前
乐观文龙完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
LikeS关注了科研通微信公众号
13秒前
13秒前
mucheng发布了新的文献求助10
14秒前
悲哀藏在现实中完成签到,获得积分10
14秒前
14秒前
天天快乐应助wang采纳,获得10
14秒前
1812完成签到,获得积分10
14秒前
科研通AI6应助1234采纳,获得10
14秒前
赵闯完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
bdJ发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649011
求助须知:如何正确求助?哪些是违规求助? 4777097
关于积分的说明 15046363
捐赠科研通 4807843
什么是DOI,文献DOI怎么找? 2571160
邀请新用户注册赠送积分活动 1527756
关于科研通互助平台的介绍 1486683