Environmental pressure and perceived costs and benefits of residents’ low-carbon behavior

自然资源经济学 碳纤维 业务 环境经济学 环境资源管理 环境科学 经济 计算机科学 算法 复合数
作者
Jie Chi Yang,Yilei Hou,Chuyun Cui,Yihui Zhou,Yali Wen
出处
期刊:Journal of Environmental Planning and Management [Taylor & Francis]
卷期号:: 1-24 被引量:1
标识
DOI:10.1080/09640568.2024.2312547
摘要

Effectively guiding residents towards low-carbon behavior is an important way to reduce carbon emissions, mitigate climate change and achieve sustainable social development. We developed a dual mediator model of environmental pressure on low-carbon behavior based on Stimulus-Organism-Response (S-O-R) theory. The structural equation modelling analysis method was used to conduct an empirical test with 1557 questionnaires of urban residents from Beijing and Shanghai. The results indicate that: (1) environmental pollution intensity and social pressure intensity had a significant effect on residents' low-carbon behavior. Social pressure was more likely to result in low-carbon behavior. (2) Perceived benefits were conducive to low-carbon behavior, whereas perceived costs inhibited low-carbon behavior. Social pressure intensity influenced low-carbon behavior by significantly acting on perceived benefits and costs, whereas environmental pollution intensity only contributed to low-carbon behavior by significantly reducing perceived costs. (3) Multi-group analysis gender, age, household size, and city of residence had significant moderating effects on the influence of environmental pollution intensity on low-carbon behavior. To promote residents' low-carbon behavior, society should increase the dissemination of information on green, frugal, and low-carbon concepts to increase social pressure. And incentive measures should be taken to promote residents' low-carbon behavior by relating them to interests. The results of the study are important for promoting residents' low-carbon behavior from the perspective of social pressure and understanding the psychological changes in residents' low-carbon behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
拾柒完成签到,获得积分10
2秒前
2秒前
linhante完成签到 ,获得积分10
3秒前
点凌蝶完成签到,获得积分10
4秒前
macxinn发布了新的文献求助10
4秒前
KCl完成签到 ,获得积分10
8秒前
思源应助庞松岩采纳,获得10
8秒前
幽默不愁完成签到,获得积分10
8秒前
Owen应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得30
11秒前
科研通AI5应助科研通管家采纳,获得30
12秒前
zho应助科研通管家采纳,获得10
12秒前
Amy发布了新的文献求助10
12秒前
Pretrial完成签到 ,获得积分10
13秒前
乐观幻雪发布了新的文献求助30
15秒前
隐形曼青应助欢呼忆丹采纳,获得10
18秒前
橘子完成签到,获得积分10
20秒前
hlmzyq完成签到,获得积分10
21秒前
23秒前
疯狂的水蜜桃完成签到,获得积分10
23秒前
秉文完成签到,获得积分10
23秒前
虞无声发布了新的文献求助50
26秒前
鱿鱼完成签到,获得积分10
26秒前
守护星星完成签到,获得积分10
28秒前
29秒前
zyx完成签到 ,获得积分10
31秒前
庞松岩发布了新的文献求助10
34秒前
踏实的白羊完成签到,获得积分10
35秒前
冰尘完成签到,获得积分10
36秒前
CCC完成签到 ,获得积分10
36秒前
37秒前
PsyAerill完成签到,获得积分10
38秒前
Sun1c7发布了新的文献求助10
42秒前
brave heart完成签到,获得积分10
43秒前
45秒前
Will完成签到 ,获得积分10
47秒前
49秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734505
求助须知:如何正确求助?哪些是违规求助? 3278465
关于积分的说明 10009670
捐赠科研通 2995064
什么是DOI,文献DOI怎么找? 1643182
邀请新用户注册赠送积分活动 780989
科研通“疑难数据库(出版商)”最低求助积分说明 749196