Mitigation of charge heterogeneity by uniform in situ coating enables stable cycling of LiCoO2 at 4.6V

材料科学 电解质 锂(药物) 钝化 涂层 电压 阴极 磷酸铁锂 降级(电信) 背景(考古学) 离子 复合材料 电极 电化学 电气工程 图层(电子) 化学 古生物学 物理化学 有机化学 内分泌学 工程类 生物 医学
作者
Yu Li,Hongyi Pan,Luyu Gan,Mingwei Zan,Yuli Huang,Bitong Wang,Biao Deng,Wang Tian,Xiqian Yu,Bo Wang,Hong Li,Xuejie Huang
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:67: 103290-103290 被引量:13
标识
DOI:10.1016/j.ensm.2024.103290
摘要

LiCoO2 is a predominant cathode for lithium-ion batteries of portable electronics owing to its merit of high volumetric energy density. Nevertheless, it experiences rapid capacity deterioration under high voltages, concomitant with structural degradation and numerous intragranular cracks. Coating has been recognized as an efficacious strategy to ameliorate the decline in cycling performance of LiCoO2 at high voltages. Hence, a systematic elucidation of the precise mechanisms underlying the mitigation of structural degradation via coating layers assumes paramount importance in the context of advancing the next generation of high-voltage LiCoO2. In this work, the intricate interrelation among lithium-ion diffusion coefficients, charge heterogeneity, and crack distribution is explicated through techniques inclusive of galvanostatic intermittent titration technique (GITT), finite element analysis (FEA), and X-ray computed tomography (XCT). A robustly stable lithium-ion-conducting coating material serves the function of curtailing the occurrence of surface passivation layers, achieved by diminishing side reactions between the LiCoO2 and the electrolyte; while a uniform coating ensures a homogeneous lithium-ion flux, thereby mitigating charge heterogeneity and the resultant mechanical strain as well as intragranular cracks. Both are important elements that collectively allow the coating to effectively protect the surface from structural degradation, thus achieving superior performances upon high-voltage charging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山有扶苏完成签到,获得积分10
1秒前
fyy完成签到 ,获得积分10
1秒前
kento发布了新的文献求助10
1秒前
1秒前
2秒前
王梦秋发布了新的文献求助10
2秒前
清晨发布了新的文献求助10
2秒前
2秒前
白青完成签到,获得积分10
2秒前
3秒前
粗暴的又槐完成签到,获得积分20
3秒前
Captainhana发布了新的文献求助10
3秒前
4秒前
yyy完成签到 ,获得积分10
5秒前
6秒前
香菜完成签到,获得积分10
6秒前
小二郎应助lhy采纳,获得10
7秒前
细小完成签到,获得积分10
8秒前
FashionBoy应助zimo采纳,获得10
8秒前
8秒前
今后应助kid采纳,获得10
9秒前
9秒前
Brown完成签到,获得积分10
10秒前
zzz发布了新的文献求助10
10秒前
xiaoliu完成签到,获得积分10
11秒前
11秒前
12秒前
dglyl发布了新的文献求助10
12秒前
科研通AI6应助lc采纳,获得10
13秒前
14秒前
自觉的丹珍完成签到,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
崽崽发布了新的文献求助10
17秒前
无花果应助背后的广山采纳,获得10
17秒前
共享精神应助小白采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858