材料科学
钙钛矿(结构)
带隙
光电子学
工程物理
接口(物质)
纳米技术
复合材料
化学工程
毛细管数
毛细管作用
工程类
作者
Johnpaul Kurisinkal Pious,Pascal Rohrbeck,Roland Widmer,Aaron H. Oechsle,Sunil B. Shivarudraiah,Radha K. Kothandaraman,Severin Siegrist,Chih‐Jen Shih,Thomas A. Jung,Stefan A. L. Weber,Ayodhya N. Tiwari,Fan Fu
标识
DOI:10.1021/acsami.5c03709
摘要
Most high-efficiency all-perovskite tandem solar cells use a "superstrate" configuration, integrating a wide-bandgap (WBG) top subcell and a narrow bandgap (NBG) bottom subcell. However, this structure suffers oxidative degradation due to easily air-exposable bottom NBG subcells. A "substrate" structure offers improved stability for tandems by encapsulating the NBG top subcell with the air-stable WBG bottom subcell. However, conventional WBG perovskite solar cells (PSCs) using water-based NiOx interlayers hinder their fabrication on top of the NBG subcells in an inert atmosphere. To overcome this, we developed a nonaqueous NiOx nanoparticle dispersion, enabling interlayer fabrication inside a glove box. The blade-coated NiOx interlayer facilitated the formation of a densely packed 2PACz (2-(9H-carbazol-9-yl)ethyl]phosphonic acid) monolayer hole transporting layer (HTL). The energetically aligned 2PACz molecules reduced minority carrier recombination at the NiOx/perovskite interface. As a result, the fully scalable 1.77 eV WBG PSCs employing a NiOx/2PACz hybrid HTL delivered a champion power conversion efficiency of 17.4%.
科研通智能强力驱动
Strongly Powered by AbleSci AI