Integration of single‐cell and bulk RNA‐sequencing data reveals the prognostic potential of epithelial gene markers for prostate cancer

前列腺癌 转录组 基因签名 生化复发 前列腺切除术 癌症 比例危险模型 基因 生物 基因表达 活检 前列腺 肿瘤科 医学 计算生物学 生物信息学 内科学 遗传学
作者
Zhuofan Mou,Lorna W. Harries
出处
期刊:Molecular Oncology [Wiley]
标识
DOI:10.1002/1878-0261.13804
摘要

Prognostic transcriptomic signatures for prostate cancer (PCa) often overlook the cellular origin of expression changes, an important consideration given the heterogeneity of the disorder. Current clinicopathological factors inadequately predict biochemical recurrence, a critical indicator guiding post‐treatment strategies following radical prostatectomy. To address this, we conducted a meta‐analysis of four large‐scale PCa datasets and found 33 previously reported PCa‐associated genes to be consistently up‐regulated in prostate tumours. By analysing single‐cell RNA‐sequencing data, we found these genes predominantly as markers in epithelial cells. Subsequently, we applied 97 advanced machine‐learning algorithms across five PCa cohorts and developed an 11‐gene epithelial expression signature. This signature robustly predicted biochemical recurrence‐free survival (BCRFS) and stratified patients into distinct risk categories, with high‐risk patients showing worse survival and altered immune cell populations. The signature outperformed traditional clinical parameters in larger cohorts and was overall superior to published PCa signatures for BCRFS. By analysing peripheral blood data, four of our signature genes showed potential as biomarkers for radiation response in patients with localised cancer and effectively stratified castration‐resistant patients for overall survival. In conclusion, this study developed a novel epithelial gene‐expression signature that enhanced BCRFS prediction and enabled effective risk stratification compared to existing clinical‐ and gene‐expression‐derived prognostic tools. Furthermore, a set of genes from the signature demonstrated potential utility in peripheral blood, a tissue amenable to minimally invasive sampling in a primary care setting, offering significant prognostic value for PCa patients without requiring a tumour biopsy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2323发布了新的文献求助10
刚刚
LOOK发布了新的文献求助60
1秒前
请叫我风吹麦浪应助ys20001采纳,获得30
1秒前
刘娇娇发布了新的文献求助10
1秒前
时光路人发布了新的文献求助10
1秒前
apricity发布了新的文献求助10
3秒前
斯文败类应助黄金矿工采纳,获得10
3秒前
xiaolang2004发布了新的文献求助10
4秒前
sun耶发布了新的文献求助10
4秒前
4秒前
SYLH应助火翟丰丰山心采纳,获得10
4秒前
YY完成签到,获得积分20
4秒前
CJ完成签到,获得积分10
5秒前
三太子完成签到,获得积分10
5秒前
大模型应助xiangkun采纳,获得10
5秒前
超速也文章完成签到,获得积分10
7秒前
愿。景发布了新的文献求助10
7秒前
Hello应助zhuxi采纳,获得10
7秒前
7秒前
上官若男应助图灵桑采纳,获得10
7秒前
7秒前
健壮安柏完成签到 ,获得积分10
7秒前
7秒前
8秒前
8R60d8应助读大学好难采纳,获得10
8秒前
2323完成签到,获得积分10
8秒前
paprika完成签到,获得积分10
9秒前
长安发布了新的文献求助10
9秒前
9秒前
思源应助YY采纳,获得10
10秒前
皮皮发布了新的文献求助10
11秒前
11秒前
刘娇娇完成签到,获得积分10
11秒前
李爱国应助ekko采纳,获得10
11秒前
时光路人完成签到,获得积分10
12秒前
炎晨发布了新的文献求助10
12秒前
EDR完成签到,获得积分10
12秒前
我我发布了新的文献求助10
13秒前
13秒前
黄金矿工发布了新的文献求助10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465938
求助须知:如何正确求助?哪些是违规求助? 3058897
关于积分的说明 9063789
捐赠科研通 2749294
什么是DOI,文献DOI怎么找? 1508454
科研通“疑难数据库(出版商)”最低求助积分说明 696922
邀请新用户注册赠送积分活动 696607