DeepSeek Versus GPT: Evaluation of Large Language Model Chatbots' Responses on Orofacial Clefts.

医学 口腔正畸科 听力学 牙科
作者
Hui Zhou,Zhiyan Wang,Rongsheng Wang,Leheng Jiang,Congxiao Zhu,Haoyue Guo,Tao Song,Ningbei Yin
出处
期刊:PubMed
标识
DOI:10.1097/scs.0000000000011399
摘要

Advancements in natural language processing (NLP) have led to the emergence of large language models (LLMs) as potential tools for patient consultations. This study investigates the ability of reasoning-capable models to provide diagnostic and treatment recommendations for orofacial clefts. A cross-sectional comparative study was conducted using 20 questions based on Google Trends and expert experience, with both models providing responses to these queries. Readability was assessed using the Flesch-Kincaid Reading Ease (FRES), Flesch-Kincaid Grade Level (FKGL), sentence count, number of sentences, and percentage of complex words. No statistically significant differences were found in the readability metrics for FKGL (P = 0.064) and FRES (P = 0.56) between the responses of the 2 models. Physician evaluation using a 4-point Likert scale assessed accuracy, clarity, relevance, and trustworthiness, with Deepseek-R1 achieving significantly higher ratings overall (P = 0.041). However, GPT o1-preview exhibited notable empathy in certain clinical scenarios. Both models displayed complementary strengths, indicating potential for clinical consultation applications. Future research should focus on integrating these strengths within medical-specific LLMs to generate more reliable, empathetic, and personalized treatment recommendations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Su发布了新的文献求助10
刚刚
morlison完成签到,获得积分10
刚刚
刚刚
weny完成签到,获得积分10
1秒前
1秒前
1秒前
冷雨完成签到,获得积分20
1秒前
2秒前
这世界有那么多人完成签到,获得积分10
2秒前
2秒前
科研通AI5应助是是是采纳,获得10
2秒前
2秒前
keyanli完成签到,获得积分10
2秒前
妮露的修狗完成签到,获得积分10
3秒前
llll完成签到 ,获得积分10
3秒前
隐形曼青应助bobi_belle采纳,获得10
3秒前
干净的人达完成签到 ,获得积分10
3秒前
3秒前
FashionBoy应助高雯采纳,获得10
3秒前
科研通AI5应助Hannahcx采纳,获得10
4秒前
nina完成签到,获得积分10
5秒前
羽宇完成签到,获得积分0
5秒前
5秒前
典雅之云完成签到,获得积分10
5秒前
张zi完成签到,获得积分10
5秒前
6秒前
冷雨发布了新的文献求助10
6秒前
6秒前
6秒前
丰D发布了新的文献求助10
7秒前
8秒前
xiang完成签到,获得积分10
9秒前
凯凯完成签到,获得积分10
9秒前
Gilana应助大禹治果汁采纳,获得20
9秒前
小鲸发布了新的文献求助10
10秒前
阿辉完成签到,获得积分10
11秒前
英俊的铭应助机智忆文采纳,获得10
11秒前
英俊的铭应助机智忆文采纳,获得10
11秒前
12秒前
cdercder应助小野狼采纳,获得20
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 500
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3767694
求助须知:如何正确求助?哪些是违规求助? 3312340
关于积分的说明 10163291
捐赠科研通 3027644
什么是DOI,文献DOI怎么找? 1661614
邀请新用户注册赠送积分活动 794172
科研通“疑难数据库(出版商)”最低求助积分说明 756013