A digital twin-driven machine learning framework for structural condition monitoring using multi-datasets

计算机科学 人工智能 机器学习 数据挖掘 模式识别(心理学)
作者
George Karyofyllas,Dimitrios Giagopoulos,Xinyu Jia,Costas Papadimitriou
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217251324110
摘要

Real-time condition monitoring (CM) utilizing vibration measurements offers a proactive approach to detect faults and enable predictive maintenance. The robustness and accuracy of CM applications significantly rely on the quality of training datasets. While numerical model-generated data is commonly used in current solutions, the efficiency of CM frameworks is greatly influenced by dataset quality. This research addresses the challenge by employing data-driven modeling to enhance the efficiency and accuracy of CM frameworks. A Hierarchical Bayesian Modeling (HBM) framework is introduced to estimate uncertainties in finite element (FE) model parameters at the healthy state. The HBM is particularly adept at addressing uncertainties in model parameters caused by variations in experimental data, material characteristics, assembly processes, and nonlinear mechanisms under diverse loading scenarios. These uncertainties in the parameters of the FE model obtained at the healthy state of the structure are maintained for the model representing the damaged state of the structure. The FE model with the associated uncertainties is used to generate data for training a convolution neural network model for the different health states. Such training based only on observed/inferred uncertainties at the healthy state significantly enhances the robustness and overall accuracy of the CM framework against previous approaches based on arbitrarily imposed uncertainties at the healthy and damaged state of the structure. To validate the effectiveness of the proposed method, multiple experimental structural dynamics tests on a small-scale laboratory truss are conducted at the healthy and damaged states. The results demonstrate the applicability and effectiveness of the developed approach in improving the structural health monitoring process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sss发布了新的文献求助10
3秒前
高高猎豹完成签到 ,获得积分10
4秒前
淡然冬灵发布了新的文献求助10
4秒前
成就小懒虫完成签到,获得积分10
6秒前
盛夏应助听话的画板采纳,获得10
6秒前
甜甜圈完成签到,获得积分10
6秒前
7秒前
7秒前
积极黄豆完成签到,获得积分10
8秒前
ceeray23应助xiaon采纳,获得10
8秒前
所所应助科研小白采纳,获得10
9秒前
9秒前
ceeray23应助hihi采纳,获得10
9秒前
sss完成签到,获得积分10
12秒前
新手上路完成签到,获得积分10
13秒前
闪闪半芹完成签到,获得积分10
14秒前
王赞完成签到,获得积分10
14秒前
土豪的土豆完成签到 ,获得积分10
15秒前
CY完成签到,获得积分10
15秒前
Jasper应助罗颂子采纳,获得10
15秒前
16秒前
poplar完成签到,获得积分10
16秒前
16秒前
千年主治完成签到 ,获得积分10
18秒前
晴栀发布了新的文献求助30
19秒前
19秒前
19秒前
小孙完成签到,获得积分10
20秒前
zxy完成签到,获得积分10
21秒前
无花果应助ai化学采纳,获得10
21秒前
21秒前
qiang发布了新的文献求助10
22秒前
22秒前
23秒前
英俊的铭应助无情修杰采纳,获得10
24秒前
碗碗完成签到,获得积分10
24秒前
ch发布了新的文献求助10
25秒前
西瓜完成签到 ,获得积分10
25秒前
79发布了新的文献求助10
26秒前
oopsabc完成签到,获得积分10
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737713
求助须知:如何正确求助?哪些是违规求助? 3281328
关于积分的说明 10024815
捐赠科研通 2998078
什么是DOI,文献DOI怎么找? 1645034
邀请新用户注册赠送积分活动 782506
科研通“疑难数据库(出版商)”最低求助积分说明 749814