EEG-based recognition of hand movement and its parameter

计算机科学 脑电图 人工智能 脑-机接口 过度拟合 卷积神经网络 模式识别(心理学) 信号(编程语言) 接口(物质) 滑动窗口协议 语音识别 计算机视觉 人工神经网络 窗口(计算) 心理学 气泡 精神科 最大气泡压力法 并行计算 程序设计语言 操作系统
作者
Yuxuan Yan,Jianguang Li,Mingyue Yin
出处
期刊:Journal of Neural Engineering [IOP Publishing]
标识
DOI:10.1088/1741-2552/adba8a
摘要

Abstract Brain-computer interface (BCI) is a cutting-edge technology that enables interaction with external devices by decoding human intentions, and is highly valuable in the fields of medical rehabilitation and human-robot collaboration. The technique of decoding motor intent for motor execution (ME) based on electroencephalographic (EEG) signals is in the feasibility study stage. There are still insufficient studies on the accuracy of motor execution EEG signal recognition in between-subjects classification to reach the level of realistic applications. This paper aims to investigate EEG signal-driven hand movement recognition by analyzing low-frequency time-domain (LFTD) information. Experiments with four types of hand movements, two force parameter (extraction and pushing) tasks, and a four-target directional displacement task were designed and executed, and the EEG data from thirteen healthy volunteers was collected. Sliding window approach is used to expand the dataset in order to address the issue of EEG signal overfitting. Furtherly, CNN-BiLSTM model, an end-to-end serial combination of a Bidirectional Long Short-Term Memory Network (BiLSTM) and Convolutional Neural Network (CNN) is constructed to classify the raw EEG data to recognize the hand movement. According to experimental data, the model is able to categorize four types of hand movements, extraction movements, pushing movements, and four target direction displacement movements with an accuracy of 99.14%±0.49%, 99.29%±0.11%, 99.23%±0.60%, and 98.11%± 0.23%, respectively. Furthermore, comparative tests conducted with alternative deep learning models (LSTM, CNN, EEGNet, CNN-LSTM) demonstrates that the CNN-BiLSTM model is with practicable accuracy in terms of EEG-based hand movement recognition and its parameter decoding.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenyu完成签到,获得积分10
刚刚
shisui完成签到,获得积分10
1秒前
科研通AI5应助江江采纳,获得10
1秒前
赘婿应助797571采纳,获得10
1秒前
2秒前
无患子完成签到,获得积分10
3秒前
词汇过万完成签到,获得积分10
3秒前
Hello应助墨123采纳,获得10
3秒前
whatever完成签到,获得积分0
4秒前
晓薇完成签到,获得积分10
4秒前
元羞花完成签到,获得积分10
4秒前
4秒前
hhh完成签到,获得积分10
5秒前
feishao完成签到,获得积分10
5秒前
bubble完成签到,获得积分10
7秒前
DrKe完成签到,获得积分10
7秒前
LJR发布了新的文献求助10
7秒前
一一完成签到,获得积分10
7秒前
8秒前
8秒前
飞快的冰淇淋完成签到 ,获得积分10
8秒前
chowjb完成签到,获得积分10
9秒前
爱吃马铃薯完成签到,获得积分10
9秒前
菠萝汁完成签到,获得积分10
10秒前
猫小咪完成签到,获得积分10
10秒前
机智灵薇完成签到,获得积分10
11秒前
labordoc完成签到,获得积分10
11秒前
Anyemzl完成签到,获得积分10
12秒前
柯伊达完成签到,获得积分10
12秒前
z'x发布了新的文献求助10
12秒前
12秒前
三寿完成签到,获得积分10
14秒前
江江发布了新的文献求助10
14秒前
慕青应助迷路思远采纳,获得10
14秒前
王莫为发布了新的文献求助10
16秒前
huhuan完成签到,获得积分10
16秒前
火星完成签到 ,获得积分10
16秒前
huaiting应助沉静小蚂蚁采纳,获得10
17秒前
小土豆完成签到,获得积分20
17秒前
gzgljh完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3585807
求助须知:如何正确求助?哪些是违规求助? 3154673
关于积分的说明 9502180
捐赠科研通 2857327
什么是DOI,文献DOI怎么找? 1570454
邀请新用户注册赠送积分活动 736242
科研通“疑难数据库(出版商)”最低求助积分说明 721589