An integrated AI knowledge graph framework of bacterial enzymology and metabolism

推论 计算机科学 计算生物学 可扩展性 代谢途径 生物 数据科学 人工智能 新陈代谢 数据库 生物化学
作者
Norman Spencer,Mathusan Gunabalasingam,Keshav Dial,Xiaxia Di,Tonya Malcolm,Nathan A. Magarvey
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (15)
标识
DOI:10.1073/pnas.2425048122
摘要

The study of bacterial metabolism holds immense significance for improving human health and advancing agricultural practices. The prospective applications of genomically encoded bacterial metabolism present a compelling opportunity, particularly in the light of the rapid expansion of genomic sequencing data. Current metabolic inference tools face challenges in scaling with large datasets, leading to increased computational demands, and often exhibit limited inter-relatability and interoperability. Here, we introduce the Integrated Biosynthetic Inference Suite (IBIS), which employs deep learning models and a knowledge graph to facilitate rapid, scalable bacterial metabolic inference. This system leverages a series of Transformer based models to generate high quality, meaningful embeddings for individual enzymes, biosynthetic domains, and metabolic pathways. These embedded representations enable rapid, large-scale comparisons of metabolic proteins and pathways, surpassing the capabilities of conventional methodologies. The examination of evolutionary and functionally conserved metabolites across diverse bacterial species is facilitated by integrating the predictive capabilities of IBIS into a graph database enriched with comprehensive metadata. The consideration of both primary and specialized metabolism, combined with an embedding logic for enzyme discovery, uniquely positions IBIS to identify potential novel metabolic pathways. With the expansion of genomic data necessitating transformative approaches to advance molecular metabolism research, IBIS delivers an AI-driven holistic investigation of bacterial metabolism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的从寒完成签到,获得积分10
2秒前
小二郎应助停云濛濛采纳,获得20
3秒前
约翰完成签到,获得积分10
5秒前
7秒前
善学以致用应助YUMI采纳,获得10
7秒前
8秒前
笨笨娇完成签到 ,获得积分10
11秒前
科研通AI2S应助mazg采纳,获得10
11秒前
11秒前
13秒前
踏实的纸飞机完成签到 ,获得积分10
14秒前
www发布了新的文献求助10
15秒前
康乐顺岸完成签到,获得积分10
16秒前
plusweng完成签到 ,获得积分10
17秒前
17秒前
嘟嘟嘟嘟嘟完成签到,获得积分10
18秒前
cyan完成签到 ,获得积分10
18秒前
叽叽卟卟发布了新的文献求助10
20秒前
耳机单蹦完成签到,获得积分10
21秒前
pluto应助Leslie采纳,获得10
21秒前
脑洞疼应助称心寒松采纳,获得30
21秒前
yc完成签到,获得积分10
21秒前
外向的鸭子完成签到,获得积分10
21秒前
不和可乐发布了新的文献求助10
23秒前
苹果蜗牛完成签到 ,获得积分10
23秒前
兔纸兔吱兔仔儿完成签到,获得积分10
24秒前
25秒前
科研通AI5应助Raiden采纳,获得20
25秒前
26秒前
26秒前
liuyifei发布了新的文献求助20
27秒前
王灿灿发布了新的文献求助10
28秒前
29秒前
29秒前
30秒前
稀松完成签到,获得积分0
31秒前
31秒前
www发布了新的文献求助10
32秒前
栗子发布了新的文献求助10
32秒前
32秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427