Calcification Detection in Intravascular Ultrasound (IVUS) Images Using Transfer Learning Based MultiSVM model

人工智能 血管内超声 钙化 计算机科学 支持向量机 学习迁移 深度学习 模式识别(心理学) 超声波 机器学习 计算机视觉 放射科 医学
作者
Priyanka Arora,Parminder Singh,Akshay Girdhar,Rajesh Vijayvergiya
出处
期刊:Ultrasonic Imaging [SAGE Publishing]
卷期号:45 (3): 136-150 被引量:2
标识
DOI:10.1177/01617346231164574
摘要

Cardiovascular disease serves as the leading cause of death worldwide. Calcification detection is considered an important factor in cardiovascular diseases. Currently, medical practitioners visually inspect the presence of calcification using intravascular ultrasound (IVUS) images. The study aims to detect the extent of calcification as belonging to class I, II as mild calcification, and class III, IV as dense calcification from IVUS images acquired at 40 MHz. To detect calcification, the features were extracted using improved AlexNet architecture and then were fed into machine learning classifiers. The experiments were carried out using 14 real IVUS pullbacks of 10 patients. Experimental results show that the combination of traditional machine learning with deep learning approaches significantly improves accuracy. The results show that support vector machines outperform all other classifiers. The proposed model is compared with two other pre-trained models GoogLeNet (98.8%), SqueezeNet (99.2%), and exhibits considerable improvement in classification accuracy (99.8%). In the future other models such as Vision Transformers could be explored with additional feature selection methods such as ReliefF, PSO, ACO, etc. to improve the overall accuracy of diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助研猫采纳,获得20
1秒前
1秒前
1秒前
朴实的哈密瓜数据线完成签到,获得积分10
3秒前
SYLH应助99采纳,获得20
3秒前
在水一方应助xinying采纳,获得10
4秒前
4秒前
4秒前
小二郎应助奋斗蜗牛采纳,获得10
5秒前
5秒前
ZCM完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
7秒前
7秒前
7秒前
da发布了新的文献求助10
8秒前
lily发布了新的文献求助10
9秒前
童年的秋千完成签到,获得积分10
9秒前
9秒前
小金今天自律了吗完成签到,获得积分10
10秒前
星辰大海应助ee采纳,获得10
11秒前
11秒前
Lenacici发布了新的文献求助10
11秒前
q792309106发布了新的文献求助10
11秒前
Viv完成签到,获得积分10
11秒前
samuel发布了新的文献求助10
11秒前
12秒前
13秒前
Wei关闭了Wei文献求助
13秒前
13秒前
psc完成签到,获得积分10
14秒前
14秒前
15秒前
共享精神应助zyy采纳,获得10
15秒前
16秒前
樱丸小桃子完成签到,获得积分10
16秒前
千千完成签到,获得积分10
17秒前
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979479
求助须知:如何正确求助?哪些是违规求助? 3523421
关于积分的说明 11217607
捐赠科研通 3260944
什么是DOI,文献DOI怎么找? 1800264
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807126