Calcification Detection in Intravascular Ultrasound (IVUS) Images Using Transfer Learning Based MultiSVM model

人工智能 血管内超声 钙化 计算机科学 支持向量机 学习迁移 深度学习 模式识别(心理学) 超声波 机器学习 计算机视觉 放射科 医学
作者
Priyanka Arora,Parminder Singh,Akshay Girdhar,Rajesh Vijayvergiya
出处
期刊:Ultrasonic Imaging [SAGE]
卷期号:45 (3): 136-150 被引量:2
标识
DOI:10.1177/01617346231164574
摘要

Cardiovascular disease serves as the leading cause of death worldwide. Calcification detection is considered an important factor in cardiovascular diseases. Currently, medical practitioners visually inspect the presence of calcification using intravascular ultrasound (IVUS) images. The study aims to detect the extent of calcification as belonging to class I, II as mild calcification, and class III, IV as dense calcification from IVUS images acquired at 40 MHz. To detect calcification, the features were extracted using improved AlexNet architecture and then were fed into machine learning classifiers. The experiments were carried out using 14 real IVUS pullbacks of 10 patients. Experimental results show that the combination of traditional machine learning with deep learning approaches significantly improves accuracy. The results show that support vector machines outperform all other classifiers. The proposed model is compared with two other pre-trained models GoogLeNet (98.8%), SqueezeNet (99.2%), and exhibits considerable improvement in classification accuracy (99.8%). In the future other models such as Vision Transformers could be explored with additional feature selection methods such as ReliefF, PSO, ACO, etc. to improve the overall accuracy of diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贪玩若剑完成签到,获得积分10
刚刚
CipherSage应助微笑采文采纳,获得10
刚刚
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
Wind应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
拼搏蜻蜓完成签到 ,获得积分10
1秒前
潦草小狗完成签到 ,获得积分10
1秒前
1秒前
1秒前
罗健完成签到 ,获得积分0
2秒前
唐寒溪发布了新的文献求助10
2秒前
vividkingking完成签到 ,获得积分10
3秒前
热情的c99发布了新的文献求助10
3秒前
徐安琪完成签到,获得积分10
3秒前
3秒前
小丸子的樱桃红完成签到,获得积分10
4秒前
桉豆完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
Emmmnnnze发布了新的文献求助30
5秒前
5秒前
7秒前
XLC关闭了XLC文献求助
7秒前
NoraZibelin2002给jack_kunn的求助进行了留言
8秒前
8秒前
脑洞疼应助会飞的猪qq采纳,获得10
8秒前
粒粒李发布了新的文献求助10
9秒前
qiuli发布了新的文献求助10
9秒前
10秒前
10秒前
大肥鸟完成签到,获得积分20
10秒前
搜集达人应助LiXF采纳,获得10
10秒前
ctttt发布了新的文献求助10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666218
求助须知:如何正确求助?哪些是违规求助? 4880144
关于积分的说明 15116535
捐赠科研通 4825345
什么是DOI,文献DOI怎么找? 2583230
邀请新用户注册赠送积分活动 1537375
关于科研通互助平台的介绍 1495581