Extracting geometric and semantic point cloud features with gateway attention for accurate 3D object detection

点云 计算机科学 人工智能 计算机视觉 抽象 目标检测 特征提取 特征(语言学) 模式识别(心理学) 语言学 认识论 哲学
作者
Huaijin Liu,Ji‐Xiang Du,Yong Zhang,Hongbo Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106227-106227 被引量:6
标识
DOI:10.1016/j.engappai.2023.106227
摘要

3D object detection using point clouds has received a lot of attention in autonomous vehicles, robotics, and virtual reality. However, feature learning for 3D object detection from point cloud is very challenging due to the irregularity and sparsity of 3D point cloud data. Grid-based methods convert irregular point clouds into regular 2D views or 3D voxels and then use 2D CNN or 3D CNN for feature learning, but the point cloud transformation process will inevitably cause quantization loss. Point-based methods use the PointNet network to directly learn the features of the point cloud, but the semantic information obtained by PointNet may be incomplete. To address the above issues, we propose a novel Gateway Attention-based Point Set Abstraction 3D object detector (GAPSA) to learn geometric and semantic point cloud features. Specifically, the framework utilizes set abstraction downsampling points and performs local feature extraction on the sampling points through the proposed gateway attention pooling module to learn more discriminative point cloud features. Given the high-quality 3D proposals generated by attention-based backbone networks, we design a RoI multi-pooling head to adaptively learn features for sparse points of interest within proposals, so as to encode richer contextual information and obtain fine-grained features to accurately estimate object confidence and location. Compared with advanced point-based 3D object detectors, experimental results demonstrate that our attention-based point set abstraction 3D object detector has the best detection performance on KITTI and NuScenes datasets. The code is available at https://github.com/liuhuaijjin/GAPSA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuyuan9588完成签到 ,获得积分10
1秒前
ww完成签到,获得积分10
4秒前
大大完成签到,获得积分10
4秒前
yan儿发布了新的文献求助10
5秒前
sherrycofe应助司徒无剑采纳,获得10
6秒前
6秒前
7秒前
小龙完成签到,获得积分10
8秒前
无花果应助锦瑟采纳,获得10
8秒前
李健的小迷弟应助kakaka采纳,获得10
8秒前
cheunsor完成签到,获得积分10
8秒前
9秒前
在水一方应助天真豪英采纳,获得10
9秒前
高工发布了新的文献求助10
10秒前
11秒前
可乐加冰完成签到,获得积分10
11秒前
12秒前
满城烟沙完成签到 ,获得积分10
12秒前
lynn完成签到,获得积分10
13秒前
ljforever发布了新的文献求助10
14秒前
SUnnnnn完成签到,获得积分10
15秒前
18746005898完成签到 ,获得积分10
16秒前
June发布了新的文献求助10
16秒前
感性的不惜完成签到,获得积分20
16秒前
宋宋完成签到,获得积分10
17秒前
17秒前
清漪完成签到,获得积分10
18秒前
kakaka完成签到,获得积分20
18秒前
18秒前
耍酷的花卷完成签到 ,获得积分10
19秒前
默默的骁发布了新的文献求助10
20秒前
20秒前
上官若男应助左丘忻采纳,获得10
20秒前
20秒前
鲤鱼不二发布了新的文献求助10
21秒前
22秒前
winga完成签到,获得积分10
22秒前
务实山灵发布了新的文献求助10
23秒前
peng完成签到,获得积分10
25秒前
山乞凡完成签到 ,获得积分10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134744
求助须知:如何正确求助?哪些是违规求助? 2785657
关于积分的说明 7773533
捐赠科研通 2441441
什么是DOI,文献DOI怎么找? 1297924
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825