Bi-Classifier Adversarial Network for Cross-Scene Hyperspectral Image Classification

计算机科学 分类器(UML) 人工智能 高光谱成像 模式识别(心理学) 域适应 学习迁移 训练集 上下文图像分类 标记数据 领域(数学分析) 图像(数学) 数学 数学分析
作者
Haoyu Wang,Yuhu Cheng,Xiaomin Liu,Yi Kong
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:6
标识
DOI:10.1109/lgrs.2023.3266407
摘要

Labeling hyperspectral images (HSIs) is time-consuming and labor-intensive for researchers, so the deficiency of adequate labeling samples is a giant obstacle to conducting HSI classification. Especially, such issue is exacerbated when there are no available labeled samples in the target scene. For the sake of resolving aforesaid issue, we put forward a novel cross-scene HSI classification method namely bi-classifier adversarial augmentation network (BCAN) so as to transfer knowledge from a similar but different source domain to an unlabeled target domain. First, the source and target domain distributions are aligned by maximizing and minimizing the decision discrepancy between two classifiers, respectively. Then, more accurate samples corresponding to pseudo-labels are selected as reliable samples and added to the training set. Finally, the spectral band random zeroing (SBRZ) method is proposed to expand the training samples for reliable samples, which handles the problem of insufficient network training resulted from insufficient samples in the source domain. By using multi-classifiers for domain adaptation and data augmentation, the accuracy of the network for cross-scene HSI classification tasks are improved. BCAN can extract the source domain's helpful information to complete the target domain classification task. Experiments conducted on ten HSI data pairs show that BCAN outperforms many state-of-the-art baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
好好应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
好好应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
1秒前
好好应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
dew应助科研通管家采纳,获得50
1秒前
FU发布了新的文献求助10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
好好应助科研通管家采纳,获得10
2秒前
xu应助科研通管家采纳,获得10
2秒前
风清扬应助科研通管家采纳,获得30
2秒前
浮游应助科研通管家采纳,获得10
2秒前
3秒前
路人发布了新的文献求助10
4秒前
4秒前
隐形曼青应助猪猪hero采纳,获得10
4秒前
6秒前
迷路的寒云完成签到,获得积分20
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716