Bi-Classifier Adversarial Network for Cross-Scene Hyperspectral Image Classification

计算机科学 分类器(UML) 人工智能 高光谱成像 模式识别(心理学) 域适应 学习迁移 训练集 上下文图像分类 标记数据 领域(数学分析) 图像(数学) 数学 数学分析
作者
Haoyu Wang,Yuhu Cheng,Xiaomin Liu,Yi Kong
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:6
标识
DOI:10.1109/lgrs.2023.3266407
摘要

Labeling hyperspectral images (HSIs) is time-consuming and labor-intensive for researchers, so the deficiency of adequate labeling samples is a giant obstacle to conducting HSI classification. Especially, such issue is exacerbated when there are no available labeled samples in the target scene. For the sake of resolving aforesaid issue, we put forward a novel cross-scene HSI classification method namely bi-classifier adversarial augmentation network (BCAN) so as to transfer knowledge from a similar but different source domain to an unlabeled target domain. First, the source and target domain distributions are aligned by maximizing and minimizing the decision discrepancy between two classifiers, respectively. Then, more accurate samples corresponding to pseudo-labels are selected as reliable samples and added to the training set. Finally, the spectral band random zeroing (SBRZ) method is proposed to expand the training samples for reliable samples, which handles the problem of insufficient network training resulted from insufficient samples in the source domain. By using multi-classifiers for domain adaptation and data augmentation, the accuracy of the network for cross-scene HSI classification tasks are improved. BCAN can extract the source domain's helpful information to complete the target domain classification task. Experiments conducted on ten HSI data pairs show that BCAN outperforms many state-of-the-art baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分20
刚刚
Ava应助WB采纳,获得10
2秒前
3秒前
3秒前
魔幻诗兰完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
stellc完成签到,获得积分10
4秒前
4秒前
祝你开心发布了新的文献求助10
5秒前
追寻宛海完成签到,获得积分10
6秒前
KKK发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
迷人静白完成签到,获得积分10
8秒前
8秒前
9秒前
wangye发布了新的文献求助10
9秒前
wanci应助zyyyyyyyy采纳,获得10
9秒前
9秒前
追寻宛海发布了新的文献求助15
10秒前
10秒前
复杂惜霜发布了新的文献求助10
10秒前
Jasper应助激昂的逊采纳,获得10
10秒前
黎先生发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
wanci应助务实的西牛采纳,获得10
12秒前
彭于晏应助ww采纳,获得10
12秒前
浮游应助勇yi采纳,获得10
12秒前
12秒前
怀玉发布了新的文献求助10
14秒前
科研通AI6应助SONG采纳,获得10
14秒前
科研通AI6应助是why耶采纳,获得10
14秒前
14秒前
eijgnij发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901