Bi-Classifier Adversarial Network for Cross-Scene Hyperspectral Image Classification

计算机科学 分类器(UML) 人工智能 高光谱成像 模式识别(心理学) 域适应 学习迁移 训练集 上下文图像分类 标记数据 领域(数学分析) 图像(数学) 数学 数学分析
作者
Haoyu Wang,Yuhu Cheng,Xiaomin Liu,Yi Kong
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:6
标识
DOI:10.1109/lgrs.2023.3266407
摘要

Labeling hyperspectral images (HSIs) is time-consuming and labor-intensive for researchers, so the deficiency of adequate labeling samples is a giant obstacle to conducting HSI classification. Especially, such issue is exacerbated when there are no available labeled samples in the target scene. For the sake of resolving aforesaid issue, we put forward a novel cross-scene HSI classification method namely bi-classifier adversarial augmentation network (BCAN) so as to transfer knowledge from a similar but different source domain to an unlabeled target domain. First, the source and target domain distributions are aligned by maximizing and minimizing the decision discrepancy between two classifiers, respectively. Then, more accurate samples corresponding to pseudo-labels are selected as reliable samples and added to the training set. Finally, the spectral band random zeroing (SBRZ) method is proposed to expand the training samples for reliable samples, which handles the problem of insufficient network training resulted from insufficient samples in the source domain. By using multi-classifiers for domain adaptation and data augmentation, the accuracy of the network for cross-scene HSI classification tasks are improved. BCAN can extract the source domain's helpful information to complete the target domain classification task. Experiments conducted on ten HSI data pairs show that BCAN outperforms many state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
土豆完成签到,获得积分10
1秒前
记忆完成签到,获得积分10
1秒前
ww完成签到,获得积分10
1秒前
犹豫的向南完成签到,获得积分10
1秒前
cmh完成签到,获得积分10
1秒前
越幸运完成签到 ,获得积分10
2秒前
思源应助xyrt采纳,获得10
2秒前
simon完成签到 ,获得积分10
2秒前
远山完成签到,获得积分10
2秒前
可爱的函函应助研友_LOK59L采纳,获得10
3秒前
南风发布了新的文献求助10
3秒前
每天100次完成签到,获得积分10
3秒前
xiaoH发布了新的文献求助10
3秒前
大海之滨完成签到,获得积分10
4秒前
Litchi完成签到 ,获得积分10
4秒前
英勇语蓉完成签到,获得积分10
4秒前
依依完成签到,获得积分10
4秒前
glycine完成签到,获得积分10
4秒前
Mr.Reese完成签到,获得积分10
4秒前
yy发布了新的文献求助10
5秒前
ASSA完成签到,获得积分10
5秒前
清脆怜寒发布了新的文献求助10
6秒前
son完成签到,获得积分10
6秒前
没朴子完成签到,获得积分10
6秒前
Jenny完成签到,获得积分10
6秒前
英姑应助ywt采纳,获得10
7秒前
海海发布了新的文献求助20
7秒前
小萝卜完成签到,获得积分10
7秒前
wh完成签到,获得积分10
8秒前
小可完成签到 ,获得积分10
8秒前
跟我回江南完成签到,获得积分10
8秒前
hh完成签到,获得积分10
8秒前
高分子完成签到,获得积分10
8秒前
8秒前
9秒前
问题多多完成签到 ,获得积分10
9秒前
小蘑菇应助轻松的半芹采纳,获得10
10秒前
浮游应助CT采纳,获得10
10秒前
CC完成签到 ,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427249
求助须知:如何正确求助?哪些是违规求助? 4540661
关于积分的说明 14173635
捐赠科研通 4458699
什么是DOI,文献DOI怎么找? 2445081
邀请新用户注册赠送积分活动 1436143
关于科研通互助平台的介绍 1413698