Bi-Classifier Adversarial Network for Cross-Scene Hyperspectral Image Classification

计算机科学 分类器(UML) 人工智能 高光谱成像 模式识别(心理学) 域适应 学习迁移 训练集 上下文图像分类 标记数据 领域(数学分析) 图像(数学) 数学 数学分析
作者
Haoyu Wang,Yuhu Cheng,Xiaomin Liu,Yi Kong
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:6
标识
DOI:10.1109/lgrs.2023.3266407
摘要

Labeling hyperspectral images (HSIs) is time-consuming and labor-intensive for researchers, so the deficiency of adequate labeling samples is a giant obstacle to conducting HSI classification. Especially, such issue is exacerbated when there are no available labeled samples in the target scene. For the sake of resolving aforesaid issue, we put forward a novel cross-scene HSI classification method namely bi-classifier adversarial augmentation network (BCAN) so as to transfer knowledge from a similar but different source domain to an unlabeled target domain. First, the source and target domain distributions are aligned by maximizing and minimizing the decision discrepancy between two classifiers, respectively. Then, more accurate samples corresponding to pseudo-labels are selected as reliable samples and added to the training set. Finally, the spectral band random zeroing (SBRZ) method is proposed to expand the training samples for reliable samples, which handles the problem of insufficient network training resulted from insufficient samples in the source domain. By using multi-classifiers for domain adaptation and data augmentation, the accuracy of the network for cross-scene HSI classification tasks are improved. BCAN can extract the source domain's helpful information to complete the target domain classification task. Experiments conducted on ten HSI data pairs show that BCAN outperforms many state-of-the-art baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
感动的怀莲应助Carmen采纳,获得10
刚刚
浆果肉丸完成签到,获得积分10
1秒前
1秒前
1秒前
赘婿应助安详的觅风采纳,获得10
1秒前
爆米花应助山手采纳,获得10
1秒前
2秒前
负负得正完成签到,获得积分10
2秒前
2秒前
Imogen发布了新的文献求助10
2秒前
2秒前
清新的易真完成签到,获得积分10
2秒前
脑洞疼应助文艺明杰采纳,获得10
2秒前
wanci应助白英采纳,获得20
2秒前
goofs完成签到,获得积分10
2秒前
vv发布了新的文献求助10
3秒前
3秒前
会发财的学术家完成签到,获得积分10
4秒前
淡定碧玉发布了新的文献求助10
4秒前
彭于晏应助车车采纳,获得10
4秒前
4秒前
Nature发布了新的文献求助10
5秒前
5秒前
TARS完成签到,获得积分10
5秒前
fairy完成签到 ,获得积分10
5秒前
adazbq发布了新的文献求助10
5秒前
妙不可言完成签到,获得积分10
5秒前
6秒前
leahlin发布了新的文献求助10
6秒前
感恩发布了新的文献求助10
6秒前
6秒前
SciGPT应助重新开始采纳,获得10
6秒前
7秒前
打打应助唐唐采纳,获得10
7秒前
8秒前
大桶水果茶完成签到,获得积分10
8秒前
延文星发布了新的文献求助10
9秒前
zzw发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665611
求助须知:如何正确求助?哪些是违规求助? 4877669
关于积分的说明 15114824
捐赠科研通 4824856
什么是DOI,文献DOI怎么找? 2582972
邀请新用户注册赠送积分活动 1536984
关于科研通互助平台的介绍 1495418