Bi-Classifier Adversarial Network for Cross-Scene Hyperspectral Image Classification

计算机科学 分类器(UML) 人工智能 高光谱成像 模式识别(心理学) 域适应 学习迁移 训练集 上下文图像分类 标记数据 领域(数学分析) 图像(数学) 数学 数学分析
作者
Haoyu Wang,Yuhu Cheng,Xiaomin Liu,Yi Kong
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:6
标识
DOI:10.1109/lgrs.2023.3266407
摘要

Labeling hyperspectral images (HSIs) is time-consuming and labor-intensive for researchers, so the deficiency of adequate labeling samples is a giant obstacle to conducting HSI classification. Especially, such issue is exacerbated when there are no available labeled samples in the target scene. For the sake of resolving aforesaid issue, we put forward a novel cross-scene HSI classification method namely bi-classifier adversarial augmentation network (BCAN) so as to transfer knowledge from a similar but different source domain to an unlabeled target domain. First, the source and target domain distributions are aligned by maximizing and minimizing the decision discrepancy between two classifiers, respectively. Then, more accurate samples corresponding to pseudo-labels are selected as reliable samples and added to the training set. Finally, the spectral band random zeroing (SBRZ) method is proposed to expand the training samples for reliable samples, which handles the problem of insufficient network training resulted from insufficient samples in the source domain. By using multi-classifiers for domain adaptation and data augmentation, the accuracy of the network for cross-scene HSI classification tasks are improved. BCAN can extract the source domain's helpful information to complete the target domain classification task. Experiments conducted on ten HSI data pairs show that BCAN outperforms many state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang0626完成签到 ,获得积分10
刚刚
ken131完成签到 ,获得积分10
1秒前
研友_LN7AOn完成签到 ,获得积分10
2秒前
杨帆发布了新的文献求助10
3秒前
哈利波特完成签到,获得积分10
4秒前
Llllllxxxxxxx完成签到,获得积分10
5秒前
6秒前
7秒前
儒雅的夏山完成签到,获得积分10
8秒前
8秒前
杨帆完成签到,获得积分20
9秒前
12秒前
科研通AI2S应助PANGHU采纳,获得30
13秒前
加菲丰丰应助suan采纳,获得10
13秒前
小杰发布了新的文献求助10
13秒前
wanci应助AAA采纳,获得10
14秒前
pxj完成签到,获得积分10
14秒前
16秒前
lalala发布了新的文献求助80
16秒前
你才是冰雕完成签到,获得积分20
16秒前
希文完成签到,获得积分10
17秒前
JamesPei应助玛琳卡迪马采纳,获得10
17秒前
Nariy完成签到,获得积分10
19秒前
苏卿应助科研通管家采纳,获得10
22秒前
852应助科研通管家采纳,获得10
22秒前
顾矜应助科研通管家采纳,获得10
22秒前
22秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
英姑应助科研通管家采纳,获得10
22秒前
ding应助科研通管家采纳,获得10
22秒前
HEIKU应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
23秒前
HEIKU应助科研通管家采纳,获得10
23秒前
所所应助科研通管家采纳,获得10
23秒前
HEIKU应助科研通管家采纳,获得10
23秒前
Akim应助科研通管家采纳,获得10
23秒前
所所应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
23秒前
23秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165001
求助须知:如何正确求助?哪些是违规求助? 2816026
关于积分的说明 7911307
捐赠科研通 2475709
什么是DOI,文献DOI怎么找? 1318362
科研通“疑难数据库(出版商)”最低求助积分说明 632098
版权声明 602370