Tracking land use trajectory to map abandoned farmland in mountainous area

放弃(法律) 土地利用 土地利用、土地利用的变化和林业 弹道 自然地理学 气候变化 地理 农用地 环境资源管理 环境科学 生态学 天文 政治学 生物 物理 法学
作者
Dazhi Yang,Wei Song
出处
期刊:Ecological Informatics [Elsevier]
卷期号:75: 102103-102103 被引量:6
标识
DOI:10.1016/j.ecoinf.2023.102103
摘要

The strategy of recultivating abandoned farmland (AF) has been proposed as an effective response to the current global food crisis, it could increase food production without damaging the ecological environment. However, accurately identifying the spatial-temporal distribution of AF is a prerequisite for its successful implementation. Since abandonment is more likely to occur in mountainous areas than in plains, it is difficult to develop reliable methods to obtain long-time series information due to data source constraints and complex algorithms. In this study, we present a method to identify abandoned farmland based on tracking land use change trajectory in mountainous areas. Using Google Earth Engine (GEE), we mapped the land use classification of mountainous areas year by year and analyzed the land change at pixel level to obtain abandonment data through time series recursion. We applied this method to Tongjiang County, a mountainous area in China, and verified its accuracy, which turned out to be 82%. Our results indicate that the change in abandonment rate from 2001 to 2015 showed a phased characteristics that were likely determined by the interaction between policy, economics, and the rational choice of operators in different periods. Additionally, the Kernel Density Estimation (KDE) of AF distribution in Tongjiang County presented an agglomeration and stability pattern of “southwest> central> northeast”. Land transformation model (LTM) simulations further indicated that the future contraction or expansion of AF would have the greatest impact on the critical areas (southwest region of Tongjiang County). Our findings suggest that improving the precision of preferential agricultural policies, promoting the transfer of rural land management rights, and improving farming conditions in key areas could effectively address the problem of abandonment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ixueyi发布了新的文献求助10
刚刚
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
搜集达人应助silong采纳,获得10
1秒前
XLL小绿绿发布了新的文献求助10
4秒前
天天快乐应助仙女爷爷采纳,获得10
4秒前
草莓派完成签到,获得积分10
4秒前
Karma发布了新的文献求助10
4秒前
猪猪hero应助DARLING002采纳,获得10
4秒前
蔡一完成签到,获得积分10
4秒前
聪明帅哥发布了新的文献求助10
5秒前
妮儿发布了新的文献求助10
5秒前
wills完成签到,获得积分10
5秒前
BowieHuang应助wxy采纳,获得10
5秒前
qijie完成签到,获得积分10
5秒前
5秒前
6秒前
英俊的铭应助kiiso采纳,获得10
6秒前
Lucas应助ddw采纳,获得10
7秒前
7秒前
7秒前
yao chen发布了新的文献求助10
8秒前
9秒前
大模型应助科研通管家采纳,获得10
9秒前
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
10秒前
妮儿完成签到,获得积分10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
XLL小绿绿完成签到,获得积分10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得20
11秒前
英姑应助ngldy采纳,获得10
11秒前
小米发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760635
求助须知:如何正确求助?哪些是违规求助? 5525448
关于积分的说明 15397980
捐赠科研通 4897422
什么是DOI,文献DOI怎么找? 2634176
邀请新用户注册赠送积分活动 1582268
关于科研通互助平台的介绍 1537637