Tracking land use trajectory to map abandoned farmland in mountainous area

放弃(法律) 土地利用 土地利用、土地利用的变化和林业 弹道 自然地理学 气候变化 地理 农用地 环境资源管理 环境科学 生态学 天文 政治学 生物 物理 法学
作者
Dazhi Yang,Wei Song
出处
期刊:Ecological Informatics [Elsevier]
卷期号:75: 102103-102103 被引量:6
标识
DOI:10.1016/j.ecoinf.2023.102103
摘要

The strategy of recultivating abandoned farmland (AF) has been proposed as an effective response to the current global food crisis, it could increase food production without damaging the ecological environment. However, accurately identifying the spatial-temporal distribution of AF is a prerequisite for its successful implementation. Since abandonment is more likely to occur in mountainous areas than in plains, it is difficult to develop reliable methods to obtain long-time series information due to data source constraints and complex algorithms. In this study, we present a method to identify abandoned farmland based on tracking land use change trajectory in mountainous areas. Using Google Earth Engine (GEE), we mapped the land use classification of mountainous areas year by year and analyzed the land change at pixel level to obtain abandonment data through time series recursion. We applied this method to Tongjiang County, a mountainous area in China, and verified its accuracy, which turned out to be 82%. Our results indicate that the change in abandonment rate from 2001 to 2015 showed a phased characteristics that were likely determined by the interaction between policy, economics, and the rational choice of operators in different periods. Additionally, the Kernel Density Estimation (KDE) of AF distribution in Tongjiang County presented an agglomeration and stability pattern of “southwest> central> northeast”. Land transformation model (LTM) simulations further indicated that the future contraction or expansion of AF would have the greatest impact on the critical areas (southwest region of Tongjiang County). Our findings suggest that improving the precision of preferential agricultural policies, promoting the transfer of rural land management rights, and improving farming conditions in key areas could effectively address the problem of abandonment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kgf发布了新的文献求助10
刚刚
星辰大海应助承蒙大爱采纳,获得10
1秒前
何必在乎发布了新的文献求助10
1秒前
解语花031发布了新的文献求助10
1秒前
独特的谷雪完成签到,获得积分10
1秒前
竹峪卿发布了新的文献求助10
1秒前
展锋发布了新的文献求助10
2秒前
潮汐发布了新的文献求助10
2秒前
Owen应助全焱采纳,获得10
2秒前
CX330发布了新的文献求助10
3秒前
4秒前
善学以致用应助小熊采纳,获得10
4秒前
一一一完成签到,获得积分20
5秒前
6秒前
华仔应助来一颗溜溜梅采纳,获得10
6秒前
KissesU完成签到 ,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
mmol发布了新的文献求助10
8秒前
无极微光应助bobo采纳,获得20
8秒前
橘皮灯灯完成签到,获得积分10
9秒前
9秒前
9秒前
巴拉巴拉小魔仙完成签到,获得积分10
10秒前
顾矜应助Uuu采纳,获得10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
宁哥发布了新的文献求助10
12秒前
wzswzs发布了新的文献求助10
12秒前
cloverdown发布了新的文献求助10
13秒前
一朵海棠花完成签到,获得积分10
13秒前
qxqy6678发布了新的文献求助10
13秒前
达西西完成签到 ,获得积分10
13秒前
一一一关注了科研通微信公众号
14秒前
14秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711035
求助须知:如何正确求助?哪些是违规求助? 5202070
关于积分的说明 15263091
捐赠科研通 4863454
什么是DOI,文献DOI怎么找? 2610771
邀请新用户注册赠送积分活动 1561017
关于科研通互助平台的介绍 1518534