Tracking land use trajectory to map abandoned farmland in mountainous area

放弃(法律) 土地利用 土地利用、土地利用的变化和林业 弹道 自然地理学 气候变化 地理 农用地 环境资源管理 环境科学 生态学 天文 政治学 生物 物理 法学
作者
Dazhi Yang,Wei Song
出处
期刊:Ecological Informatics [Elsevier]
卷期号:75: 102103-102103 被引量:6
标识
DOI:10.1016/j.ecoinf.2023.102103
摘要

The strategy of recultivating abandoned farmland (AF) has been proposed as an effective response to the current global food crisis, it could increase food production without damaging the ecological environment. However, accurately identifying the spatial-temporal distribution of AF is a prerequisite for its successful implementation. Since abandonment is more likely to occur in mountainous areas than in plains, it is difficult to develop reliable methods to obtain long-time series information due to data source constraints and complex algorithms. In this study, we present a method to identify abandoned farmland based on tracking land use change trajectory in mountainous areas. Using Google Earth Engine (GEE), we mapped the land use classification of mountainous areas year by year and analyzed the land change at pixel level to obtain abandonment data through time series recursion. We applied this method to Tongjiang County, a mountainous area in China, and verified its accuracy, which turned out to be 82%. Our results indicate that the change in abandonment rate from 2001 to 2015 showed a phased characteristics that were likely determined by the interaction between policy, economics, and the rational choice of operators in different periods. Additionally, the Kernel Density Estimation (KDE) of AF distribution in Tongjiang County presented an agglomeration and stability pattern of “southwest> central> northeast”. Land transformation model (LTM) simulations further indicated that the future contraction or expansion of AF would have the greatest impact on the critical areas (southwest region of Tongjiang County). Our findings suggest that improving the precision of preferential agricultural policies, promoting the transfer of rural land management rights, and improving farming conditions in key areas could effectively address the problem of abandonment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干秋寒发布了新的文献求助10
刚刚
共享精神应助蔺亦丝采纳,获得10
1秒前
安静的筝发布了新的文献求助10
1秒前
free2030完成签到,获得积分10
2秒前
orixero应助大力的一手采纳,获得10
2秒前
兴奋的万声完成签到,获得积分10
3秒前
thomas发布了新的文献求助10
3秒前
3秒前
zhhua发布了新的文献求助10
4秒前
善学以致用应助风清扬采纳,获得10
4秒前
LH发布了新的文献求助20
4秒前
羊羊完成签到,获得积分10
4秒前
4秒前
叶成会完成签到,获得积分10
5秒前
美丽完成签到,获得积分10
5秒前
执着的海完成签到,获得积分10
6秒前
6秒前
拼搏绿柳完成签到,获得积分0
6秒前
7秒前
童宝完成签到,获得积分10
7秒前
12发布了新的文献求助10
7秒前
上官若男应助安静的筝采纳,获得10
8秒前
dudu发布了新的文献求助10
8秒前
8秒前
Jasper应助CC采纳,获得10
8秒前
芒顿小镇完成签到,获得积分10
9秒前
情怀应助叶成会采纳,获得10
9秒前
10秒前
孙芳完成签到,获得积分10
10秒前
10秒前
喜悦发布了新的文献求助10
10秒前
Jennie完成签到,获得积分10
10秒前
12秒前
情怀应助thomas采纳,获得10
12秒前
shuoliu完成签到 ,获得积分10
12秒前
美丽发布了新的文献求助10
12秒前
一二应助如泣草芥采纳,获得10
13秒前
13秒前
dusk发布了新的文献求助10
13秒前
善学以致用应助时生采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579766
关于积分的说明 14370418
捐赠科研通 4507955
什么是DOI,文献DOI怎么找? 2470343
邀请新用户注册赠送积分活动 1457229
关于科研通互助平台的介绍 1431172