Deep learning seismic damage assessment with embedded signal denoising considering three-dimensional time–frequency feature correlation

希尔伯特-黄变换 计算机科学 降噪 噪音(视频) 参数统计 时频分析 信号(编程语言) 预处理器 模式识别(心理学) 人工智能 地震学 地质学 统计 白噪声 数学 程序设计语言 电信 雷达 图像(数学)
作者
Zhe Su,Jia Yu,Xiao Xiao,Jiajun Wang,Xiaoling Wang
出处
期刊:Engineering Structures [Elsevier]
卷期号:286: 116148-116148 被引量:5
标识
DOI:10.1016/j.engstruct.2023.116148
摘要

Fast and accurate seismic damage assessment is crucial for timely post-earthquake evaluation and rescue. In seismic damage assessment, the correlation between ground motions in three directions during the time–frequency transform and the appropriate denoising thresholds during signal data preprocessing pose challenges for traditional methods. We propose a novel deep learning framework, DRSNet (deep residual shrinkage network), which incorporates the CNN structure of ResNet and a soft-threshold denoising module for simultaneous seismic signal denoising and damage assessment. To consider the feature correlation in time–frequency transform of seismic signals, they are first decomposed synchronously with noise-assisted multivariate empirical mode decomposition (NAMEMD) into multi-dimensional intrinsic mode functions (MIMF), and MIMFs are then transformed into seismic time–frequency maps using a non-parametric time–frequency analysis with scalable time windows and the Duhamel integral form. The subsidence and the subsidence rate of the dam are computed with finite element analysis and considered to assess seismic damage. The time–frequency maps and the finite element analysis results are used as input and output data to train DRSNet with no need for preprocessing seismic signal noise. The proposed model has been applied to a large-scale hydropower dam and achieved an average precision of 94.52% for predicting the seismic damage levels, which outperforms ResNet and ResNeSt by 3.09% and 2.62%, respectively. Thorough comparison and analysis of the model demonstrate its potential for accurate and efficient seismic damage assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fbpuf发布了新的文献求助10
1秒前
兔纸兔吱兔仔儿完成签到,获得积分10
2秒前
迷你的晓槐完成签到,获得积分20
2秒前
3秒前
javalin发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
6秒前
从容的无极应助H_C采纳,获得10
6秒前
7秒前
共享精神应助科研通管家采纳,获得10
9秒前
劲秉应助科研通管家采纳,获得10
9秒前
枫叶应助科研通管家采纳,获得10
9秒前
12334应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
hello发布了新的文献求助10
10秒前
javalin完成签到,获得积分10
11秒前
11秒前
满意修洁完成签到,获得积分10
11秒前
徐丹发布了新的文献求助10
12秒前
小二郎应助沙不凡采纳,获得10
12秒前
12秒前
13秒前
13秒前
慕青应助狗儿吖采纳,获得10
13秒前
14秒前
英姑应助执着的忆雪采纳,获得10
14秒前
15秒前
15秒前
满意修洁发布了新的文献求助10
15秒前
hotmoneysniper完成签到,获得积分10
16秒前
17秒前
科研通AI2S应助无语的怜梦采纳,获得10
17秒前
18秒前
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459163
求助须知:如何正确求助?哪些是违规求助? 3053710
关于积分的说明 9037991
捐赠科研通 2742977
什么是DOI,文献DOI怎么找? 1504606
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694663