亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Course recommendation model based on Knowledge Graph Embedding

计算机科学 分类 图形 知识图 嵌入 人工智能 路径(计算) 数据科学 理论计算机科学 机器学习 情报检索 程序设计语言
作者
Ismail Chetoui,Essaid El Bachari,Mohamed El Adnani
标识
DOI:10.1109/sitis57111.2022.00082
摘要

The use of graphs as a method of storing data has begun to rise significantly in recent years, due to the new way of representing data in graphs. This is leveraged by the structure of graphs that facilitate modeling interactions between real-world entities. With the rapid development of technologies such as machine learning and deep learning, the digitalization of education has entered the era with artificial intelligence as the main feature. As an important part of artificial intelligence technology, knowledge graph as a format of data storing provides possibilities for smart education and promotes the innovation and development of smart education. In this context, we present in this communication a model that we built to facilitate reaching the appropriate lesson for each learner among a large group of lessons in an eLearning graph, this model is practically divided into two parts, the first in which we sort the learners by defining the profile of each of them, which will facilitate their classification into groups, and in the second part, we connect each learner with his appropriate path to achieve the desired lesson, by building a nodal path through sequential prediction until reaching the target lesson, relying mainly on embedding graph models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆豆眼发布了新的文献求助10
2秒前
商商上上完成签到 ,获得积分10
5秒前
123456完成签到 ,获得积分10
6秒前
Owen应助你嵙这个期刊没买采纳,获得10
6秒前
腼腆的寒风完成签到 ,获得积分10
7秒前
11秒前
Jasper应助完美的流沙采纳,获得10
13秒前
liruixin发布了新的文献求助10
16秒前
琪琪完成签到,获得积分10
18秒前
21秒前
22秒前
null应助科研通管家采纳,获得10
24秒前
null应助科研通管家采纳,获得10
24秒前
null应助科研通管家采纳,获得10
24秒前
null应助科研通管家采纳,获得10
24秒前
SciGPT应助科研通管家采纳,获得30
25秒前
SciGPT应助科研通管家采纳,获得30
25秒前
就123发布了新的文献求助10
25秒前
null应助科研通管家采纳,获得10
25秒前
酷波er应助科研通管家采纳,获得10
25秒前
null应助科研通管家采纳,获得10
25秒前
25秒前
酷波er应助科研通管家采纳,获得10
25秒前
寒冷的妙梦完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
34秒前
36秒前
Hello应助有魅力的孤云采纳,获得10
36秒前
wanci应助liruixin采纳,获得10
37秒前
38秒前
喜悦的小土豆完成签到 ,获得积分10
40秒前
就123发布了新的文献求助10
41秒前
cw完成签到,获得积分10
42秒前
陌陌发布了新的文献求助10
43秒前
Raunio完成签到,获得积分10
43秒前
善学以致用应助Cecilia采纳,获得10
45秒前
爆米花应助陌陌采纳,获得10
49秒前
52秒前
58秒前
Francisco2333完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723399
求助须知:如何正确求助?哪些是违规求助? 5276969
关于积分的说明 15298660
捐赠科研通 4871905
什么是DOI,文献DOI怎么找? 2616323
邀请新用户注册赠送积分活动 1566184
关于科研通互助平台的介绍 1523064