Optimal EV Fast Charging Station Deployment Based on a Reinforcement Learning Framework

马尔可夫决策过程 强化学习 软件部署 计算机科学 维数之咒 数学优化 马尔可夫过程 服务质量 循环神经网络 人工智能 人工神经网络 计算机网络 统计 数学 操作系统
作者
Zhonghao Zhao,C. K. M. Lee,Jingzheng Ren,Yung Po Tsang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (8): 8053-8065 被引量:1
标识
DOI:10.1109/tits.2023.3265517
摘要

This study aims to determine the optimal deployment plan for EV fast charging stations in a transportation network with a limited budget. The objective of the deployment problem is to maximize the quality of service (QoS) with respect to both waiting time and range anxiety from the perspective of EV customers. With the rapid growth of the electric vehicle (EV) market penetration, state-of-the-art algorithms based on mathematical programming are limited in handling high-dimensional optimization problems adequately. Unlike previous studies, we make the first attempt to formulate the fast charging station deployment problem (FCSDP) as a finite discrete Markov decision process (MDP) in a novel reinforcement learning (RL) framework to alleviate the curse of dimensionality problem. Since creating a supervised training dataset is impractical due to the high computational complexity of the FCSDP, we propose a recurrent neural network (RNN) with an attention mechanism to learn the model parameters and determine the optimal policy in a completely unsupervised manner. Finally, numerical experiments are conducted on multiple problem sizes to evaluate the performance of the RNN-based RL framework. Simulation results show that the proposed approach outperforms the comparing algorithms in terms of solution quality and computation time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Accept完成签到,获得积分0
刚刚
1秒前
油个大饼呜呜呜完成签到,获得积分10
2秒前
王哥完成签到,获得积分10
3秒前
诚心代芙完成签到 ,获得积分10
3秒前
3秒前
cowboy007发布了新的文献求助10
4秒前
乐乐应助eternity136采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
明眸完成签到 ,获得积分10
6秒前
7秒前
王手发布了新的文献求助10
8秒前
8秒前
8秒前
烟花应助zzq778采纳,获得10
10秒前
10秒前
欣欣发布了新的文献求助10
10秒前
小欣6116发布了新的文献求助10
11秒前
Jiuhui发布了新的文献求助10
11秒前
御风甜咖啡完成签到,获得积分10
11秒前
uupp完成签到,获得积分10
12秒前
机智雁凡完成签到,获得积分10
13秒前
Cheung2121发布了新的文献求助30
14秒前
15秒前
17秒前
谜记完成签到,获得积分10
17秒前
共享精神应助Cheung2121采纳,获得30
17秒前
光撒盐完成签到,获得积分10
18秒前
cowboy007完成签到,获得积分10
18秒前
张振宇完成签到 ,获得积分10
19秒前
zz发布了新的文献求助10
20秒前
zzq778发布了新的文献求助10
22秒前
黄怡婷完成签到 ,获得积分10
22秒前
Daisy应助科研通管家采纳,获得10
23秒前
机智苗应助科研通管家采纳,获得10
23秒前
香蕉觅云应助科研通管家采纳,获得10
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
赘婿应助科研通管家采纳,获得10
23秒前
大模型应助科研通管家采纳,获得10
23秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029