Optimal EV Fast Charging Station Deployment Based on a Reinforcement Learning Framework

马尔可夫决策过程 强化学习 软件部署 计算机科学 维数之咒 数学优化 马尔可夫过程 服务质量 循环神经网络 人工智能 人工神经网络 计算机网络 统计 数学 操作系统
作者
Zhonghao Zhao,C. K. M. Lee,Jingzheng Ren,Yung Po Tsang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (8): 8053-8065 被引量:1
标识
DOI:10.1109/tits.2023.3265517
摘要

This study aims to determine the optimal deployment plan for EV fast charging stations in a transportation network with a limited budget. The objective of the deployment problem is to maximize the quality of service (QoS) with respect to both waiting time and range anxiety from the perspective of EV customers. With the rapid growth of the electric vehicle (EV) market penetration, state-of-the-art algorithms based on mathematical programming are limited in handling high-dimensional optimization problems adequately. Unlike previous studies, we make the first attempt to formulate the fast charging station deployment problem (FCSDP) as a finite discrete Markov decision process (MDP) in a novel reinforcement learning (RL) framework to alleviate the curse of dimensionality problem. Since creating a supervised training dataset is impractical due to the high computational complexity of the FCSDP, we propose a recurrent neural network (RNN) with an attention mechanism to learn the model parameters and determine the optimal policy in a completely unsupervised manner. Finally, numerical experiments are conducted on multiple problem sizes to evaluate the performance of the RNN-based RL framework. Simulation results show that the proposed approach outperforms the comparing algorithms in terms of solution quality and computation time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
3秒前
害羞映容完成签到,获得积分10
3秒前
共享精神应助c57采纳,获得10
3秒前
wuli亲故发布了新的文献求助10
4秒前
rachel完成签到 ,获得积分10
4秒前
星辰大海应助假发君采纳,获得10
5秒前
5秒前
mochi发布了新的文献求助10
6秒前
简简简完成签到,获得积分10
6秒前
Aurora.H发布了新的文献求助10
7秒前
完美蚂蚁发布了新的文献求助10
8秒前
9秒前
所所应助wuli亲故采纳,获得10
10秒前
11秒前
害羞映容发布了新的文献求助10
11秒前
Owen应助多肉葡萄采纳,获得10
11秒前
小林完成签到 ,获得积分10
13秒前
慕青应助完美蚂蚁采纳,获得10
13秒前
彭shuai完成签到,获得积分10
14秒前
姽婳wy发布了新的文献求助10
15秒前
16秒前
沉静冬灵应助欣喜的鹰采纳,获得20
16秒前
lili发布了新的文献求助10
16秒前
16秒前
18秒前
19秒前
贪玩的访风完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
notsoeasy发布了新的文献求助10
23秒前
23秒前
12312312312发布了新的文献求助20
24秒前
26秒前
fuje发布了新的文献求助10
26秒前
CipherSage应助Aurora.H采纳,获得10
28秒前
28秒前
30秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976177
求助须知:如何正确求助?哪些是违规求助? 3520366
关于积分的说明 11202970
捐赠科研通 3256899
什么是DOI,文献DOI怎么找? 1798535
邀请新用户注册赠送积分活动 877725
科研通“疑难数据库(出版商)”最低求助积分说明 806516