Ensemble regression based on polynomial regression-based decision tree and its application in the in-situ data of tunnel boring machine

多项式回归 决策树 逻辑模型树 回归分析 真线性模型 回归 线性回归 局部回归 集成学习 计算机科学 分段回归 随机森林 贝叶斯多元线性回归 回归诊断 稳健性(进化) 人工智能 数据挖掘 数学 统计 机器学习 生物化学 化学 基因
作者
Maolin Shi,Weifei Hu,Muxi Li,Jian Zhang,Xueguan Song,Wei Sun
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:188: 110022-110022 被引量:65
标识
DOI:10.1016/j.ymssp.2022.110022
摘要

Regression is an important branch of engineering data mining tasks, aiming to establish a regression model to predict the output of interest based on the input variables. To meet the requirements of different missions, the engineering system usually changes its operation status so that the regression relationship between the output and input variables changes. In this paper, two ensemble regression methods are proposed based on polynomial regression and decision tree, in which sample space partition is used to improve the prediction accuracy and ensemble strategy is used to improve the performance robustness of the regression model. The first ensemble regression method (named PRB) is developed under the framework of bagging. The second ensemble regression method (named PRF) is similar to the first one, but feature randomness is introduced. At each node of the polynomial regression-based decision tree, the polynomial regression error is used to select the best splitting feature. The experiments on a series of mathematical functions and engineering datasets indicate that the proposed ensemble regression methods outperform the polynomial regression-based decision tree, the polynomial regression method, and the random forest method in most experiments. The proposed ensemble regression methods are applied to model the dataset of a tunnel boring machine, aiming to predict the earth pressure based on the operation parameters of the cutterhead. The results indicate that the proposed two ensemble regression methods produce more accurate prediction results, and the PRF method performs best in most experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
bo完成签到,获得积分10
2秒前
科目三应助xxdefaj采纳,获得10
2秒前
可靠的初雪完成签到 ,获得积分10
4秒前
英俊的铭应助wangwenzhe采纳,获得10
4秒前
Lucia给Lucia的求助进行了留言
5秒前
1313131发布了新的文献求助10
5秒前
CSII发布了新的文献求助10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
6秒前
煜钧发布了新的文献求助10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得50
6秒前
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
6秒前
orixero应助科研通管家采纳,获得80
6秒前
6秒前
今后应助科研通管家采纳,获得30
6秒前
田様应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
7秒前
缓慢煎蛋应助科研通管家采纳,获得20
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得30
7秒前
慕青应助科研通管家采纳,获得10
7秒前
7秒前
拓跋箴发布了新的文献求助30
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
上官若男应助鱼海寻俞采纳,获得10
9秒前
非言墨语完成签到,获得积分10
10秒前
shhoing应助今何在采纳,获得10
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662771
求助须知:如何正确求助?哪些是违规求助? 3223591
关于积分的说明 9752272
捐赠科研通 2933546
什么是DOI,文献DOI怎么找? 1606137
邀请新用户注册赠送积分活动 758279
科研通“疑难数据库(出版商)”最低求助积分说明 734771