Ensemble regression based on polynomial regression-based decision tree and its application in the in-situ data of tunnel boring machine

多项式回归 决策树 逻辑模型树 回归分析 真线性模型 回归 线性回归 局部回归 集成学习 计算机科学 分段回归 随机森林 贝叶斯多元线性回归 回归诊断 稳健性(进化) 人工智能 数据挖掘 数学 统计 机器学习 生物化学 化学 基因
作者
Maolin Shi,Weifei Hu,Muxi Li,Jian Zhang,Xueguan Song,Wei Sun
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:188: 110022-110022 被引量:65
标识
DOI:10.1016/j.ymssp.2022.110022
摘要

Regression is an important branch of engineering data mining tasks, aiming to establish a regression model to predict the output of interest based on the input variables. To meet the requirements of different missions, the engineering system usually changes its operation status so that the regression relationship between the output and input variables changes. In this paper, two ensemble regression methods are proposed based on polynomial regression and decision tree, in which sample space partition is used to improve the prediction accuracy and ensemble strategy is used to improve the performance robustness of the regression model. The first ensemble regression method (named PRB) is developed under the framework of bagging. The second ensemble regression method (named PRF) is similar to the first one, but feature randomness is introduced. At each node of the polynomial regression-based decision tree, the polynomial regression error is used to select the best splitting feature. The experiments on a series of mathematical functions and engineering datasets indicate that the proposed ensemble regression methods outperform the polynomial regression-based decision tree, the polynomial regression method, and the random forest method in most experiments. The proposed ensemble regression methods are applied to model the dataset of a tunnel boring machine, aiming to predict the earth pressure based on the operation parameters of the cutterhead. The results indicate that the proposed two ensemble regression methods produce more accurate prediction results, and the PRF method performs best in most experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
iNk应助薛薛采纳,获得20
2秒前
2秒前
3秒前
orixero应助hjb采纳,获得10
3秒前
林夕君发布了新的文献求助10
5秒前
JIaaaa完成签到,获得积分20
5秒前
BocchiWu完成签到,获得积分10
5秒前
拜拜发布了新的文献求助10
6秒前
怦然心动完成签到,获得积分10
6秒前
阿甲发布了新的文献求助10
9秒前
10秒前
生椰拿铁完成签到 ,获得积分10
11秒前
listen发布了新的文献求助10
11秒前
奥特超曼应助xiaosongmufaeins采纳,获得10
11秒前
李爱国应助梅雨季来信采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
科研助手6应助科研通管家采纳,获得10
13秒前
DD应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
13秒前
科研助手6应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
传奇3应助iKYy采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得20
13秒前
Ava应助科研通管家采纳,获得10
14秒前
ding应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得30
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998144
求助须知:如何正确求助?哪些是违规求助? 3537656
关于积分的说明 11272231
捐赠科研通 3276814
什么是DOI,文献DOI怎么找? 1807126
邀请新用户注册赠送积分活动 883718
科研通“疑难数据库(出版商)”最低求助积分说明 810014