Tacrolimus in the treatment of childhood nephrotic syndrome: Machine learning detects novel biomarkers and predicts efficacy

医学 队列 逻辑回归 接收机工作特性 观察研究 内科学 随机森林 强的松 机器学习 计算机科学
作者
Xiaolan Mo,Xiujuan Chen,Huasong Zeng,Wei Zheng,Chifong Ieong,Huixian Li,Qiongbo Huang,Zichuan Xu,Jinlian Yang,Qianying Liang,Huiying Liang,Xia Gao,Min Huang,Jiali Li
出处
期刊:Pharmacotherapy [Wiley]
卷期号:43 (1): 43-52 被引量:5
标识
DOI:10.1002/phar.2749
摘要

The pharmacokinetics and pharmacodynamics of tacrolimus (TAC) vary greatly among individuals, hindering its precise utilization. Moreover, effective models for the early prediction of TAC efficacy in patients with nephrotic syndrome (NS) are lacking. We aimed to identify key factors affecting TAC efficacy and develop efficacy prediction models for childhood NS using machine learning algorithms.This was an observational cohort study of patients with pediatric refractory NS.Guangzhou Women and Children's Medical Center between June 2013 and December 2018.203 patients with pediatric refractory NS were used for model generation and 35 patients were used for model validation.All patients regularly received double immunosuppressive therapy comprising TAC and low-dose prednisone or methylprednisolone. In this observational cohort study of 203 pediatric patients with refractory NS, clinical and genetic variables, including single-nucleotide polymorphism (SNPs), were identified. TAC efficacy was evaluated 3 months after administration according to two different evaluation criteria: response or non-response (Group 1) and complete remission, partial remission, or non-remission (Group 2).Logistic regression, extremely random trees, gradient boosting decision trees, random forest, and extreme gradient boosting algorithms were used to develop and validate the models. Prediction models were validated among a cohort of 35 patients with NS.The random forest models performed best in both groups, and the area under the receiver operating characteristics curve of these two models was 80.7% (Group 1) and 80.3% (Group 2). These prediction models included urine erythrocyte count before administration, steroid types, and eight SNPs (ITGB4 rs2290460, TRPC6 rs3824934, CTGF rs9399005, IL13 rs20541, NFKBIA rs8904, NFKBIA rs8016947, MAP3K11 rs7946115, and SMARCAL1 rs11886806).Two pre-administration models with good predictive performance for TAC response of patients with NS were developed and validated using machine learning algorithms. These accurate models could assist clinicians in predicting TAC efficacy in pediatric patients with NS before utilization to avoid treatment failure or adverse effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大翟发布了新的文献求助10
1秒前
SciGPT应助Jackie采纳,获得10
2秒前
sunyt完成签到,获得积分10
2秒前
4秒前
4秒前
6秒前
dingyi601完成签到,获得积分10
7秒前
英姑应助sunyt采纳,获得30
7秒前
量子星尘发布了新的文献求助10
8秒前
nino发布了新的文献求助10
8秒前
李亚浩发布了新的文献求助10
9秒前
俏皮的邴发布了新的文献求助10
9秒前
扣扣尼哇发布了新的文献求助30
10秒前
糖不太甜发布了新的文献求助10
10秒前
浮游应助欢喜的尔冬采纳,获得10
11秒前
13秒前
汉堡包应助YZ采纳,获得10
15秒前
Allein发布了新的文献求助10
16秒前
赘婿应助李亚浩采纳,获得10
20秒前
20秒前
21秒前
量子星尘发布了新的文献求助10
25秒前
Moonber发布了新的文献求助10
25秒前
26秒前
壮观复天完成签到 ,获得积分10
26秒前
orixero应助科研通管家采纳,获得30
26秒前
隐形曼青应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得50
26秒前
猪猪hero应助科研通管家采纳,获得10
26秒前
华仔应助科研通管家采纳,获得10
27秒前
猪猪hero应助科研通管家采纳,获得10
27秒前
完美世界应助科研通管家采纳,获得10
27秒前
CipherSage应助科研通管家采纳,获得10
27秒前
彭于晏应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得10
27秒前
充电宝应助科研通管家采纳,获得10
27秒前
酷波er应助科研通管家采纳,获得10
27秒前
wanci应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421862
求助须知:如何正确求助?哪些是违规求助? 4536861
关于积分的说明 14155275
捐赠科研通 4453423
什么是DOI,文献DOI怎么找? 2442864
邀请新用户注册赠送积分活动 1434254
关于科研通互助平台的介绍 1411370