亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Tacrolimus in the treatment of childhood nephrotic syndrome: Machine learning detects novel biomarkers and predicts efficacy

医学 队列 逻辑回归 接收机工作特性 观察研究 内科学 随机森林 强的松 机器学习 计算机科学
作者
Xiaolan Mo,Xiujuan Chen,Huasong Zeng,Wei Zheng,Huabin Yang,Huixian Li,Qiongbo Huang,Zichuan Xu,Jinlian Yang,Qianying Liang,Huiying Liang,Xia Gao,Min Huang,Jia Li
出处
期刊:Pharmacotherapy [Wiley]
卷期号:43 (1): 43-52 被引量:1
标识
DOI:10.1002/phar.2749
摘要

The pharmacokinetics and pharmacodynamics of tacrolimus (TAC) vary greatly among individuals, hindering its precise utilization. Moreover, effective models for the early prediction of TAC efficacy in patients with nephrotic syndrome (NS) are lacking. We aimed to identify key factors affecting TAC efficacy and develop efficacy prediction models for childhood NS using machine learning algorithms.This was an observational cohort study of patients with pediatric refractory NS.Guangzhou Women and Children's Medical Center between June 2013 and December 2018.203 patients with pediatric refractory NS were used for model generation and 35 patients were used for model validation.All patients regularly received double immunosuppressive therapy comprising TAC and low-dose prednisone or methylprednisolone. In this observational cohort study of 203 pediatric patients with refractory NS, clinical and genetic variables, including single-nucleotide polymorphism (SNPs), were identified. TAC efficacy was evaluated 3 months after administration according to two different evaluation criteria: response or non-response (Group 1) and complete remission, partial remission, or non-remission (Group 2).Logistic regression, extremely random trees, gradient boosting decision trees, random forest, and extreme gradient boosting algorithms were used to develop and validate the models. Prediction models were validated among a cohort of 35 patients with NS.The random forest models performed best in both groups, and the area under the receiver operating characteristics curve of these two models was 80.7% (Group 1) and 80.3% (Group 2). These prediction models included urine erythrocyte count before administration, steroid types, and eight SNPs (ITGB4 rs2290460, TRPC6 rs3824934, CTGF rs9399005, IL13 rs20541, NFKBIA rs8904, NFKBIA rs8016947, MAP3K11 rs7946115, and SMARCAL1 rs11886806).Two pre-administration models with good predictive performance for TAC response of patients with NS were developed and validated using machine learning algorithms. These accurate models could assist clinicians in predicting TAC efficacy in pediatric patients with NS before utilization to avoid treatment failure or adverse effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Stella完成签到,获得积分20
7秒前
虚心怜阳完成签到 ,获得积分10
8秒前
9秒前
11秒前
娜娜发布了新的文献求助10
16秒前
19秒前
nana2hao发布了新的文献求助20
19秒前
耍酷的飞凤完成签到,获得积分10
21秒前
22秒前
KSung完成签到 ,获得积分10
26秒前
29秒前
田柾国完成签到,获得积分20
1分钟前
HudaBala完成签到,获得积分10
1分钟前
1分钟前
Levent完成签到 ,获得积分10
1分钟前
CipherSage应助wangyue采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
天大青年发布了新的文献求助10
1分钟前
1分钟前
清爽夜雪完成签到,获得积分10
1分钟前
充电宝应助天大青年采纳,获得10
2分钟前
Petrichor完成签到 ,获得积分10
2分钟前
33发布了新的文献求助30
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
2分钟前
月军完成签到,获得积分10
2分钟前
沃兹姬完成签到 ,获得积分10
2分钟前
葛觅荷完成签到,获得积分10
2分钟前
桐桐应助33采纳,获得10
2分钟前
nana2hao完成签到,获得积分10
2分钟前
研友_ZAxX6n完成签到 ,获得积分10
2分钟前
2分钟前
赘婿应助生动的宛亦采纳,获得10
2分钟前
搜集达人应助雪中采纳,获得10
2分钟前
3分钟前
我就是来找文献的完成签到,获得积分10
3分钟前
李健应助坚定岂愈采纳,获得10
3分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150492
求助须知:如何正确求助?哪些是违规求助? 2801881
关于积分的说明 7845881
捐赠科研通 2459245
什么是DOI,文献DOI怎么找? 1309130
科研通“疑难数据库(出版商)”最低求助积分说明 628656
版权声明 601727