已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Tacrolimus in the treatment of childhood nephrotic syndrome: Machine learning detects novel biomarkers and predicts efficacy

医学 队列 逻辑回归 接收机工作特性 观察研究 内科学 随机森林 强的松 机器学习 计算机科学
作者
Xiaolan Mo,Xiujuan Chen,Huasong Zeng,Wei Zheng,Chifong Ieong,Huixian Li,Qiongbo Huang,Zichuan Xu,Jinlian Yang,Qianying Liang,Huiying Liang,Xia Gao,Min Huang,Jiali Li
出处
期刊:Pharmacotherapy [Wiley]
卷期号:43 (1): 43-52 被引量:5
标识
DOI:10.1002/phar.2749
摘要

The pharmacokinetics and pharmacodynamics of tacrolimus (TAC) vary greatly among individuals, hindering its precise utilization. Moreover, effective models for the early prediction of TAC efficacy in patients with nephrotic syndrome (NS) are lacking. We aimed to identify key factors affecting TAC efficacy and develop efficacy prediction models for childhood NS using machine learning algorithms.This was an observational cohort study of patients with pediatric refractory NS.Guangzhou Women and Children's Medical Center between June 2013 and December 2018.203 patients with pediatric refractory NS were used for model generation and 35 patients were used for model validation.All patients regularly received double immunosuppressive therapy comprising TAC and low-dose prednisone or methylprednisolone. In this observational cohort study of 203 pediatric patients with refractory NS, clinical and genetic variables, including single-nucleotide polymorphism (SNPs), were identified. TAC efficacy was evaluated 3 months after administration according to two different evaluation criteria: response or non-response (Group 1) and complete remission, partial remission, or non-remission (Group 2).Logistic regression, extremely random trees, gradient boosting decision trees, random forest, and extreme gradient boosting algorithms were used to develop and validate the models. Prediction models were validated among a cohort of 35 patients with NS.The random forest models performed best in both groups, and the area under the receiver operating characteristics curve of these two models was 80.7% (Group 1) and 80.3% (Group 2). These prediction models included urine erythrocyte count before administration, steroid types, and eight SNPs (ITGB4 rs2290460, TRPC6 rs3824934, CTGF rs9399005, IL13 rs20541, NFKBIA rs8904, NFKBIA rs8016947, MAP3K11 rs7946115, and SMARCAL1 rs11886806).Two pre-administration models with good predictive performance for TAC response of patients with NS were developed and validated using machine learning algorithms. These accurate models could assist clinicians in predicting TAC efficacy in pediatric patients with NS before utilization to avoid treatment failure or adverse effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lili完成签到,获得积分10
1秒前
3秒前
qing_li完成签到,获得积分10
4秒前
4秒前
miaomiao123完成签到 ,获得积分10
5秒前
liwen发布了新的文献求助10
6秒前
勤劳凌青发布了新的文献求助20
6秒前
小蛇玩完成签到,获得积分10
6秒前
小二郎应助佛光辉采纳,获得10
7秒前
8秒前
8秒前
科研通AI6应助111采纳,获得10
9秒前
脑洞疼应助阿狸采纳,获得10
11秒前
jiangmi完成签到,获得积分10
11秒前
Z100关注了科研通微信公众号
14秒前
Omni发布了新的文献求助10
17秒前
18秒前
在水一方应助TN采纳,获得10
18秒前
leesc94完成签到 ,获得积分10
19秒前
20秒前
hy完成签到 ,获得积分10
20秒前
青雉流云完成签到,获得积分10
21秒前
Li发布了新的文献求助10
24秒前
科研通AI6应助Tulipe采纳,获得10
26秒前
27秒前
永远完成签到,获得积分10
31秒前
阿狸发布了新的文献求助10
32秒前
Akim应助开放的千青采纳,获得10
33秒前
34秒前
科研通AI6应助火星上仰采纳,获得10
34秒前
36秒前
36秒前
38秒前
咕哒猫应助佛光辉采纳,获得10
40秒前
lutuantuan完成签到,获得积分10
40秒前
yznfly应助ljq采纳,获得200
42秒前
42秒前
阿狸完成签到,获得积分10
43秒前
Ykaor完成签到 ,获得积分10
43秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627761
求助须知:如何正确求助?哪些是违规求助? 4714630
关于积分的说明 14963076
捐赠科研通 4785511
什么是DOI,文献DOI怎么找? 2555141
邀请新用户注册赠送积分活动 1516488
关于科研通互助平台的介绍 1476910