Tacrolimus in the treatment of childhood nephrotic syndrome: Machine learning detects novel biomarkers and predicts efficacy

医学 队列 逻辑回归 接收机工作特性 观察研究 内科学 随机森林 强的松 机器学习 计算机科学
作者
Xiaolan Mo,Xiujuan Chen,Huasong Zeng,Wei Zheng,Chifong Ieong,Huixian Li,Qiongbo Huang,Zichuan Xu,Jinlian Yang,Qianying Liang,Huiying Liang,Xia Gao,Min Huang,Jiali Li
出处
期刊:Pharmacotherapy [Wiley]
卷期号:43 (1): 43-52 被引量:5
标识
DOI:10.1002/phar.2749
摘要

The pharmacokinetics and pharmacodynamics of tacrolimus (TAC) vary greatly among individuals, hindering its precise utilization. Moreover, effective models for the early prediction of TAC efficacy in patients with nephrotic syndrome (NS) are lacking. We aimed to identify key factors affecting TAC efficacy and develop efficacy prediction models for childhood NS using machine learning algorithms.This was an observational cohort study of patients with pediatric refractory NS.Guangzhou Women and Children's Medical Center between June 2013 and December 2018.203 patients with pediatric refractory NS were used for model generation and 35 patients were used for model validation.All patients regularly received double immunosuppressive therapy comprising TAC and low-dose prednisone or methylprednisolone. In this observational cohort study of 203 pediatric patients with refractory NS, clinical and genetic variables, including single-nucleotide polymorphism (SNPs), were identified. TAC efficacy was evaluated 3 months after administration according to two different evaluation criteria: response or non-response (Group 1) and complete remission, partial remission, or non-remission (Group 2).Logistic regression, extremely random trees, gradient boosting decision trees, random forest, and extreme gradient boosting algorithms were used to develop and validate the models. Prediction models were validated among a cohort of 35 patients with NS.The random forest models performed best in both groups, and the area under the receiver operating characteristics curve of these two models was 80.7% (Group 1) and 80.3% (Group 2). These prediction models included urine erythrocyte count before administration, steroid types, and eight SNPs (ITGB4 rs2290460, TRPC6 rs3824934, CTGF rs9399005, IL13 rs20541, NFKBIA rs8904, NFKBIA rs8016947, MAP3K11 rs7946115, and SMARCAL1 rs11886806).Two pre-administration models with good predictive performance for TAC response of patients with NS were developed and validated using machine learning algorithms. These accurate models could assist clinicians in predicting TAC efficacy in pediatric patients with NS before utilization to avoid treatment failure or adverse effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xh完成签到 ,获得积分10
刚刚
wanci应助优雅夏彤采纳,获得20
2秒前
共享精神应助小张要努力采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
遇上就这样吧应助小栗子采纳,获得60
4秒前
朴素的闭月完成签到,获得积分10
5秒前
5秒前
开放鸿涛应助清秀茹嫣采纳,获得10
8秒前
8秒前
10秒前
Sun发布了新的文献求助10
10秒前
月悦完成签到 ,获得积分10
12秒前
NingZH完成签到,获得积分10
12秒前
宝剑葫芦发布了新的文献求助10
14秒前
15秒前
明亮小凡完成签到 ,获得积分10
15秒前
呆萌雪晴发布了新的文献求助10
15秒前
jy完成签到,获得积分10
15秒前
ZSmile发布了新的文献求助30
15秒前
甜甜匪发布了新的文献求助10
17秒前
上官若男应助黄桃采纳,获得30
18秒前
shmily完成签到 ,获得积分10
18秒前
18秒前
追梦机完成签到,获得积分10
19秒前
善学以致用应助九章采纳,获得10
21秒前
跳跃的雪珊完成签到 ,获得积分10
21秒前
充电宝应助迅速的小天鹅采纳,获得10
21秒前
fdawn发布了新的文献求助10
22秒前
知行合一发布了新的文献求助10
23秒前
zyyin完成签到,获得积分10
23秒前
ii关闭了ii文献求助
24秒前
kemeng发布了新的文献求助10
25秒前
龙海完成签到 ,获得积分10
29秒前
tracuer完成签到,获得积分10
29秒前
LZT完成签到,获得积分10
29秒前
脑洞疼应助云正则采纳,获得10
30秒前
will发布了新的文献求助10
30秒前
33秒前
34秒前
萧衡完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606280
求助须知:如何正确求助?哪些是违规求助? 4690702
关于积分的说明 14865203
捐赠科研通 4704558
什么是DOI,文献DOI怎么找? 2542558
邀请新用户注册赠送积分活动 1508054
关于科研通互助平台的介绍 1472241