Tacrolimus in the treatment of childhood nephrotic syndrome: Machine learning detects novel biomarkers and predicts efficacy

医学 队列 逻辑回归 接收机工作特性 观察研究 内科学 随机森林 强的松 机器学习 计算机科学
作者
Xiaolan Mo,Xiujuan Chen,Huasong Zeng,Wei Zheng,Chifong Ieong,Huixian Li,Qiongbo Huang,Zichuan Xu,Jinlian Yang,Qianying Liang,Huiying Liang,Xia Gao,Min Huang,Jiali Li
出处
期刊:Pharmacotherapy [Wiley]
卷期号:43 (1): 43-52 被引量:2
标识
DOI:10.1002/phar.2749
摘要

The pharmacokinetics and pharmacodynamics of tacrolimus (TAC) vary greatly among individuals, hindering its precise utilization. Moreover, effective models for the early prediction of TAC efficacy in patients with nephrotic syndrome (NS) are lacking. We aimed to identify key factors affecting TAC efficacy and develop efficacy prediction models for childhood NS using machine learning algorithms.This was an observational cohort study of patients with pediatric refractory NS.Guangzhou Women and Children's Medical Center between June 2013 and December 2018.203 patients with pediatric refractory NS were used for model generation and 35 patients were used for model validation.All patients regularly received double immunosuppressive therapy comprising TAC and low-dose prednisone or methylprednisolone. In this observational cohort study of 203 pediatric patients with refractory NS, clinical and genetic variables, including single-nucleotide polymorphism (SNPs), were identified. TAC efficacy was evaluated 3 months after administration according to two different evaluation criteria: response or non-response (Group 1) and complete remission, partial remission, or non-remission (Group 2).Logistic regression, extremely random trees, gradient boosting decision trees, random forest, and extreme gradient boosting algorithms were used to develop and validate the models. Prediction models were validated among a cohort of 35 patients with NS.The random forest models performed best in both groups, and the area under the receiver operating characteristics curve of these two models was 80.7% (Group 1) and 80.3% (Group 2). These prediction models included urine erythrocyte count before administration, steroid types, and eight SNPs (ITGB4 rs2290460, TRPC6 rs3824934, CTGF rs9399005, IL13 rs20541, NFKBIA rs8904, NFKBIA rs8016947, MAP3K11 rs7946115, and SMARCAL1 rs11886806).Two pre-administration models with good predictive performance for TAC response of patients with NS were developed and validated using machine learning algorithms. These accurate models could assist clinicians in predicting TAC efficacy in pediatric patients with NS before utilization to avoid treatment failure or adverse effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助starry采纳,获得10
刚刚
温暖冰珍完成签到 ,获得积分10
刚刚
淳之风完成签到,获得积分20
1秒前
CarterXD应助hao采纳,获得30
1秒前
科研rain完成签到 ,获得积分10
1秒前
1秒前
清爽忆山发布了新的文献求助10
2秒前
睡觉晒太阳完成签到,获得积分10
2秒前
andy完成签到,获得积分10
2秒前
2秒前
Itachi12138完成签到,获得积分10
2秒前
CipherSage应助蓝莓松饼采纳,获得10
2秒前
2秒前
团团完成签到,获得积分10
2秒前
追寻的易烟完成签到,获得积分10
2秒前
snow完成签到,获得积分10
3秒前
3秒前
3秒前
1111完成签到,获得积分20
4秒前
爆米花应助笑点低蜜蜂采纳,获得10
4秒前
橘子味汽水完成签到 ,获得积分10
4秒前
Victor陈完成签到,获得积分10
4秒前
4秒前
seed85完成签到,获得积分10
4秒前
最初完成签到,获得积分20
5秒前
Hello应助Chem is try采纳,获得10
5秒前
hhh发布了新的文献求助10
5秒前
5秒前
6秒前
落寞白曼完成签到,获得积分10
7秒前
7秒前
海鸥海鸥发布了新的文献求助10
8秒前
别让我误会完成签到 ,获得积分10
9秒前
9秒前
KK发布了新的文献求助30
9秒前
娃娃完成签到 ,获得积分20
9秒前
科研通AI5应助结实的冰真采纳,获得30
9秒前
冷静的小熊猫完成签到,获得积分10
10秒前
Donnie完成签到,获得积分10
10秒前
若尘完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672