UAV imagery based potential safety hazard evaluation for high-speed railroad using Real-time instance segmentation

分割 磁道(磁盘驱动器) 棱锥(几何) 危害 计算机科学 特征(语言学) 人工智能 实时计算 计算机视觉 语言学 操作系统 光学 物理 哲学 有机化学 化学
作者
Yunpeng Wu,Fanteng Meng,Yong Qin,Yu Qian,Fei Xu,Limin Jia
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:55: 101819-101819 被引量:47
标识
DOI:10.1016/j.aei.2022.101819
摘要

Potential safety hazards (PSHs) along the track needs to be inspected and evaluated regularly to ensure a safe environment for high-speed railroad operations. Other than track inspection, evaluating potential safety hazards in the nearby areas often requires inspectors to patrol along the track and visually identify potential threads to the train operation. The current visual inspection approach is very time-consuming and may raise safety concerns for the inspectors, especially in remote areas. Using the unmanned aerial vehicle (UAV) has great potential to complement the visual inspection by providing a better view from the top and ease the safety concerns in many cases. This study develops an automatic PSH detection framework named YOLARC (You Only Look at Railroad Coefficients) using UAV imagery for high-speed railroad monitoring. First, YOLARC is equipped with a new backbone having multiple available receptive fields to strengthen the multi-scale representation capability at a granular level and enrich the semantic information in the feature space. Then, the system integrates the abundant semantic features at different high-level layers by a light weighted feature pyramid network (FPN) with multi-scale pyramidal architecture and a Protonet with residual structure to precisely predict the track areas and PSHs. A hazard level evaluation (HLE) method, which calculates the distance between identified PSH and the track, is also developed and integrated for quantifying the hazard level. Experiments conducted on the UAV imagery of high-speed railroad dataset show the proposed system can quickly and effectively turn UAV images into useful information with a high detection rate and processing speed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虎啊虎啊完成签到,获得积分10
1秒前
er完成签到,获得积分10
1秒前
2秒前
2秒前
打打应助Leo采纳,获得20
2秒前
呵呵完成签到,获得积分10
3秒前
3秒前
云云发布了新的文献求助10
3秒前
景磬完成签到,获得积分10
3秒前
共享精神应助mw采纳,获得10
3秒前
嘉子完成签到,获得积分10
3秒前
云小澈完成签到,获得积分20
3秒前
大白发布了新的文献求助10
4秒前
无花果应助提子采纳,获得10
4秒前
Orange应助Xiaoxiannv采纳,获得10
5秒前
玉米发布了新的文献求助10
5秒前
昭玥完成签到,获得积分10
6秒前
yyy完成签到,获得积分20
6秒前
7秒前
7秒前
CodeCraft应助老贺忠实粉丝采纳,获得10
7秒前
桃子完成签到 ,获得积分10
7秒前
7秒前
万能图书馆应助云云采纳,获得10
8秒前
途莫若完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
sunzhitao完成签到,获得积分20
8秒前
云小澈发布了新的文献求助10
8秒前
9秒前
10秒前
HYH发布了新的文献求助10
10秒前
李冰冰完成签到,获得积分10
10秒前
sugar0831完成签到,获得积分20
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
无私凉面完成签到,获得积分10
11秒前
sunzhitao发布了新的文献求助10
11秒前
ufuon发布了新的文献求助10
12秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581109
求助须知:如何正确求助?哪些是违规求助? 4665690
关于积分的说明 14757767
捐赠科研通 4607511
什么是DOI,文献DOI怎么找? 2528260
邀请新用户注册赠送积分活动 1497575
关于科研通互助平台的介绍 1466462