UAV imagery based potential safety hazard evaluation for high-speed railroad using Real-time instance segmentation

分割 磁道(磁盘驱动器) 棱锥(几何) 危害 计算机科学 特征(语言学) 人工智能 实时计算 计算机视觉 语言学 操作系统 光学 物理 哲学 有机化学 化学
作者
Yunpeng Wu,Fanteng Meng,Yong Qin,Yu Qian,Fei Xu,Limin Jia
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:55: 101819-101819 被引量:47
标识
DOI:10.1016/j.aei.2022.101819
摘要

Potential safety hazards (PSHs) along the track needs to be inspected and evaluated regularly to ensure a safe environment for high-speed railroad operations. Other than track inspection, evaluating potential safety hazards in the nearby areas often requires inspectors to patrol along the track and visually identify potential threads to the train operation. The current visual inspection approach is very time-consuming and may raise safety concerns for the inspectors, especially in remote areas. Using the unmanned aerial vehicle (UAV) has great potential to complement the visual inspection by providing a better view from the top and ease the safety concerns in many cases. This study develops an automatic PSH detection framework named YOLARC (You Only Look at Railroad Coefficients) using UAV imagery for high-speed railroad monitoring. First, YOLARC is equipped with a new backbone having multiple available receptive fields to strengthen the multi-scale representation capability at a granular level and enrich the semantic information in the feature space. Then, the system integrates the abundant semantic features at different high-level layers by a light weighted feature pyramid network (FPN) with multi-scale pyramidal architecture and a Protonet with residual structure to precisely predict the track areas and PSHs. A hazard level evaluation (HLE) method, which calculates the distance between identified PSH and the track, is also developed and integrated for quantifying the hazard level. Experiments conducted on the UAV imagery of high-speed railroad dataset show the proposed system can quickly and effectively turn UAV images into useful information with a high detection rate and processing speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
小杨完成签到,获得积分10
1秒前
2秒前
123发布了新的文献求助10
3秒前
Ma完成签到,获得积分10
4秒前
llcllc发布了新的文献求助10
4秒前
子车半烟完成签到,获得积分10
5秒前
6秒前
Emmalee完成签到,获得积分10
6秒前
Susan完成签到,获得积分10
7秒前
LucienS发布了新的文献求助10
9秒前
9秒前
所所应助GAO采纳,获得10
11秒前
falling_learning完成签到 ,获得积分10
12秒前
欧阳铭发布了新的文献求助10
15秒前
丘比特应助Emmalee采纳,获得30
15秒前
彭于晏应助马66采纳,获得10
16秒前
16秒前
16秒前
18秒前
19秒前
星空下的皮先生完成签到,获得积分10
21秒前
陈tl完成签到,获得积分10
21秒前
22秒前
练习者发布了新的文献求助10
23秒前
25秒前
自信的雪糕完成签到,获得积分10
28秒前
领导范儿应助孩子气采纳,获得10
29秒前
练习者完成签到,获得积分10
30秒前
小晚完成签到,获得积分10
31秒前
31秒前
feng发布了新的文献求助20
31秒前
32秒前
sevenvnennn完成签到,获得积分10
32秒前
王了了完成签到 ,获得积分10
35秒前
35秒前
1111发布了新的文献求助10
36秒前
bias发布了新的文献求助10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967872
求助须知:如何正确求助?哪些是违规求助? 3512982
关于积分的说明 11165825
捐赠科研通 3248059
什么是DOI,文献DOI怎么找? 1794090
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578