An Enhanced AI-Based Network Intrusion Detection System Using Generative Adversarial Networks

计算机科学 自编码 人工智能 入侵检测系统 对抗制 机器学习 数据建模 人工神经网络 异常检测 深度学习 生成语法 模型攻击 数据挖掘 攻击面 网络安全 计算机安全 数据库
作者
Cheol-Hee Park,Jonghoon Lee,Youngsoo Kim,Jong‐Geun Park,Hyunjin Kim,Dowon Hong
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 2330-2345 被引量:64
标识
DOI:10.1109/jiot.2022.3211346
摘要

As communication technology advances, various and heterogeneous data are communicated in distributed environments through network systems. Meanwhile, along with the development of communication technology, the attack surface has expanded, and concerns regarding network security have increased. Accordingly, to deal with potential threats, research on network intrusion detection systems (NIDSs) has been actively conducted. Among the various NIDS technologies, recent interest is focused on artificial intelligence (AI)-based anomaly detection systems, and various models have been proposed to improve the performance of NIDS. However, there still exists the problem of data imbalance, in which AI models cannot sufficiently learn malicious behavior and thus fail to detect network threats accurately. In this study, we propose a novel AI-based NIDS that can efficiently resolve the data imbalance problem and improve the performance of the previous systems. To address the aforementioned problem, we leveraged a state-of-the-art generative model that could generate plausible synthetic data for minor attack traffic. In particular, we focused on the reconstruction error and Wasserstein distance-based generative adversarial networks, and autoencoder-driven deep learning models. To demonstrate the effectiveness of our system, we performed comprehensive evaluations over various data sets and demonstrated that the proposed systems significantly outperformed the previous AI-based NIDS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿咻嘿咻发布了新的文献求助10
1秒前
1秒前
1秒前
Kiwi发布了新的文献求助10
1秒前
头顶有座金山完成签到,获得积分10
2秒前
3秒前
隐形秋柔发布了新的文献求助10
4秒前
江峰发布了新的文献求助10
4秒前
orixero应助Na采纳,获得10
6秒前
6秒前
6秒前
Criminology34应助拾玖采纳,获得10
6秒前
彭于晏应助guoguo采纳,获得10
6秒前
7秒前
7秒前
乐乐应助TNU采纳,获得10
8秒前
清脆糖豆发布了新的文献求助10
8秒前
老福贵儿应助悬铃木采纳,获得10
10秒前
11秒前
丘比特应助隐形秋柔采纳,获得10
11秒前
开朗以珊完成签到,获得积分10
12秒前
LYP发布了新的文献求助10
12秒前
尤静柏完成签到,获得积分10
12秒前
12秒前
WF完成签到,获得积分10
12秒前
Meteor发布了新的文献求助10
12秒前
Thi发布了新的文献求助10
13秒前
jason完成签到 ,获得积分10
14秒前
15秒前
阿八八八完成签到,获得积分10
16秒前
17秒前
李健应助科研通管家采纳,获得10
17秒前
科目三应助夕荀采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
科研通AI6应助fff采纳,获得10
17秒前
风清扬应助科研通管家采纳,获得30
17秒前
科研通AI6应助fff采纳,获得30
17秒前
r1915应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589147
求助须知:如何正确求助?哪些是违规求助? 4672942
关于积分的说明 14790572
捐赠科研通 4627592
什么是DOI,文献DOI怎么找? 2532071
邀请新用户注册赠送积分活动 1500734
关于科研通互助平台的介绍 1468396