清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An Enhanced AI-Based Network Intrusion Detection System Using Generative Adversarial Networks

计算机科学 自编码 人工智能 入侵检测系统 对抗制 机器学习 数据建模 人工神经网络 异常检测 深度学习 生成语法 模型攻击 数据挖掘 攻击面 网络安全 计算机安全 数据库
作者
Cheol-Hee Park,Jonghoon Lee,Youngsoo Kim,Jong‐Geun Park,Hyunjin Kim,Dowon Hong
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 2330-2345 被引量:64
标识
DOI:10.1109/jiot.2022.3211346
摘要

As communication technology advances, various and heterogeneous data are communicated in distributed environments through network systems. Meanwhile, along with the development of communication technology, the attack surface has expanded, and concerns regarding network security have increased. Accordingly, to deal with potential threats, research on network intrusion detection systems (NIDSs) has been actively conducted. Among the various NIDS technologies, recent interest is focused on artificial intelligence (AI)-based anomaly detection systems, and various models have been proposed to improve the performance of NIDS. However, there still exists the problem of data imbalance, in which AI models cannot sufficiently learn malicious behavior and thus fail to detect network threats accurately. In this study, we propose a novel AI-based NIDS that can efficiently resolve the data imbalance problem and improve the performance of the previous systems. To address the aforementioned problem, we leveraged a state-of-the-art generative model that could generate plausible synthetic data for minor attack traffic. In particular, we focused on the reconstruction error and Wasserstein distance-based generative adversarial networks, and autoencoder-driven deep learning models. To demonstrate the effectiveness of our system, we performed comprehensive evaluations over various data sets and demonstrated that the proposed systems significantly outperformed the previous AI-based NIDS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
18秒前
lili完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
51秒前
53秒前
54秒前
Liufgui完成签到,获得积分0
55秒前
1分钟前
1分钟前
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
Emperor完成签到 ,获得积分0
1分钟前
kmzzy完成签到,获得积分10
1分钟前
1分钟前
呆呆的猕猴桃完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
Liufgui应助紫熊采纳,获得10
3分钟前
糟糕的翅膀完成签到,获得积分10
3分钟前
3分钟前
3分钟前
bkagyin应助科研通管家采纳,获得30
3分钟前
彭于晏应助科研通管家采纳,获得10
3分钟前
3分钟前
乏味发布了新的文献求助10
3分钟前
3分钟前
4分钟前
4分钟前
k001boyxw完成签到,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015320
求助须知:如何正确求助?哪些是违规求助? 3555265
关于积分的说明 11317937
捐赠科研通 3288605
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983