清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Global–Local Transformer Network for HSI and LiDAR Data Joint Classification

计算机科学 人工智能 激光雷达 模式识别(心理学) 概率逻辑 特征提取 高光谱成像 特征学习 上下文图像分类 卷积神经网络 特征(语言学) 遥感 数据挖掘 地理 图像(数学) 哲学 语言学
作者
Kexing Ding,Ting Lu,Wei Fu,Shutao Li,Fuyan Ma
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:81
标识
DOI:10.1109/tgrs.2022.3216319
摘要

Hyperspectral images (HSI) contain rich spatial and spectral detail information, while light detection and ranging (LiDAR) data can provide the elevation information. Thus, the fusion of HSI and LiDAR data can help for more accurate image classification, which becomes a hot research topic. However, it is difficult to capture complex local and global spatial-spectral associations, meanwhile, how to build an effective interaction between multi-modal data is another important issue. To this end, a novel global-local transformer network (GLT-Net) is proposed for the joint classification of HSI and LiDAR data, in this paper. The main idea is to fully exploit the advantage of the convolution operator in characterizing locally correlated features and the promising capability of transformer architecture in learning long-range dependencies. Moreover, multi-scale feature fusion and probabilistic decision fusion strategies are also designed in one framework, in order to further improve classification performance. Here, the proposed GLT-Net mainly consists of multi-scale local spatial feature learning, global spectral feature learning, and global-local feature fusion classification. In specific, multi-modal image cubes of different sizes are firstly extracted and sent into convolutional neural networks (CNNs) to learn local spatial features, which is followed by multi-modal information propagation and spatial-attention guided multi-scale feature fusion. Afterwards, by considering spectral feature channels from a sequential perspective, vision transformers are introduced to model the global spectral dependencies. Finally, multiple class estimations based on local and global features are integrated via a probabilistic decision fusion strategy. In this way, complementary information of multi-modal data as well as local/global spectral-spatial information can be fully mined and jointly utilized. Extensive experiments on three popular HSI and LiDAR datasets demonstrate that the proposed method performs superiority over state-of-the-art methods. The source code of the proposed method will be made publicly available at https://github.com/Ding-Kexin/GLT-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野丹翠应助科研通管家采纳,获得10
8秒前
持卿应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
持卿应助科研通管家采纳,获得10
8秒前
持卿应助科研通管家采纳,获得10
8秒前
持卿应助科研通管家采纳,获得10
8秒前
我是老大应助莨菪采纳,获得10
10秒前
CipherSage应助milu采纳,获得20
13秒前
21秒前
29秒前
老马哥完成签到 ,获得积分0
44秒前
大医仁心完成签到 ,获得积分10
1分钟前
CipherSage应助Penny采纳,获得10
1分钟前
1分钟前
Penny完成签到,获得积分10
1分钟前
Penny发布了新的文献求助10
1分钟前
盈盈发布了新的文献求助10
1分钟前
woxinyouyou完成签到,获得积分0
1分钟前
meeteryu完成签到,获得积分10
1分钟前
SciGPT应助盈盈采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
2分钟前
持卿应助科研通管家采纳,获得10
2分钟前
持卿应助科研通管家采纳,获得10
2分钟前
持卿应助科研通管家采纳,获得10
2分钟前
狂野丹翠应助科研通管家采纳,获得10
2分钟前
Wone3完成签到 ,获得积分10
2分钟前
knight7m完成签到 ,获得积分10
2分钟前
哈哈完成签到 ,获得积分10
2分钟前
Alisha完成签到,获得积分10
2分钟前
2分钟前
2分钟前
jjy发布了新的文献求助30
2分钟前
jjy完成签到,获得积分10
2分钟前
duoduo完成签到,获得积分10
3分钟前
3分钟前
wl发布了新的文献求助20
3分钟前
Kun应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
MchemG应助科研通管家采纳,获得20
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715020
求助须知:如何正确求助?哪些是违规求助? 5229427
关于积分的说明 15273979
捐赠科研通 4866106
什么是DOI,文献DOI怎么找? 2612683
邀请新用户注册赠送积分活动 1562893
关于科研通互助平台的介绍 1520160