Global–Local Transformer Network for HSI and LiDAR Data Joint Classification

计算机科学 人工智能 激光雷达 模式识别(心理学) 概率逻辑 特征提取 高光谱成像 特征学习 上下文图像分类 卷积神经网络 特征(语言学) 遥感 数据挖掘 地理 图像(数学) 哲学 语言学
作者
Kexing Ding,Ting Lu,Wei Fu,Shutao Li,Fuyan Ma
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:81
标识
DOI:10.1109/tgrs.2022.3216319
摘要

Hyperspectral images (HSI) contain rich spatial and spectral detail information, while light detection and ranging (LiDAR) data can provide the elevation information. Thus, the fusion of HSI and LiDAR data can help for more accurate image classification, which becomes a hot research topic. However, it is difficult to capture complex local and global spatial-spectral associations, meanwhile, how to build an effective interaction between multi-modal data is another important issue. To this end, a novel global-local transformer network (GLT-Net) is proposed for the joint classification of HSI and LiDAR data, in this paper. The main idea is to fully exploit the advantage of the convolution operator in characterizing locally correlated features and the promising capability of transformer architecture in learning long-range dependencies. Moreover, multi-scale feature fusion and probabilistic decision fusion strategies are also designed in one framework, in order to further improve classification performance. Here, the proposed GLT-Net mainly consists of multi-scale local spatial feature learning, global spectral feature learning, and global-local feature fusion classification. In specific, multi-modal image cubes of different sizes are firstly extracted and sent into convolutional neural networks (CNNs) to learn local spatial features, which is followed by multi-modal information propagation and spatial-attention guided multi-scale feature fusion. Afterwards, by considering spectral feature channels from a sequential perspective, vision transformers are introduced to model the global spectral dependencies. Finally, multiple class estimations based on local and global features are integrated via a probabilistic decision fusion strategy. In this way, complementary information of multi-modal data as well as local/global spectral-spatial information can be fully mined and jointly utilized. Extensive experiments on three popular HSI and LiDAR datasets demonstrate that the proposed method performs superiority over state-of-the-art methods. The source code of the proposed method will be made publicly available at https://github.com/Ding-Kexin/GLT-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxfsx应助Zzz采纳,获得20
刚刚
乒乓完成签到,获得积分10
1秒前
小武发布了新的文献求助10
1秒前
2号完成签到 ,获得积分10
2秒前
2秒前
小二郎应助科研小蛀虫采纳,获得10
2秒前
李爱国应助卿君采纳,获得10
4秒前
4秒前
中性粒细胞1完成签到,获得积分10
4秒前
lccute发布了新的文献求助10
5秒前
刘三哥完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
FashionBoy应助温柔衬衫采纳,获得10
8秒前
TT完成签到,获得积分10
8秒前
9秒前
一颗松应助iris2333采纳,获得20
9秒前
11秒前
TT发布了新的文献求助10
12秒前
Analchem发布了新的文献求助10
13秒前
李健的小迷弟应助锦李采纳,获得10
14秒前
魔幻曼易完成签到,获得积分10
14秒前
14秒前
14秒前
16秒前
小武完成签到,获得积分20
17秒前
17秒前
17秒前
刘子田发布了新的文献求助10
18秒前
cc完成签到,获得积分10
18秒前
FashionBoy应助hh采纳,获得10
19秒前
好啊完成签到,获得积分10
19秒前
晴天不下雨完成签到,获得积分10
19秒前
善学以致用应助黎智宸采纳,获得10
19秒前
20秒前
李健应助zz采纳,获得10
21秒前
21秒前
共享精神应助DearWhite采纳,获得10
21秒前
研友_VZG7GZ应助DearWhite采纳,获得10
21秒前
ding应助DearWhite采纳,获得10
21秒前
星辰大海应助若离采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436160
求助须知:如何正确求助?哪些是违规求助? 4548217
关于积分的说明 14212695
捐赠科研通 4468449
什么是DOI,文献DOI怎么找? 2449020
邀请新用户注册赠送积分活动 1439955
关于科研通互助平台的介绍 1416594