已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Global–Local Transformer Network for HSI and LiDAR Data Joint Classification

计算机科学 人工智能 激光雷达 模式识别(心理学) 概率逻辑 特征提取 高光谱成像 特征学习 上下文图像分类 卷积神经网络 特征(语言学) 遥感 数据挖掘 地理 图像(数学) 哲学 语言学
作者
Kexing Ding,Ting Lu,Wei Fu,Shutao Li,Fuyan Ma
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:81
标识
DOI:10.1109/tgrs.2022.3216319
摘要

Hyperspectral images (HSI) contain rich spatial and spectral detail information, while light detection and ranging (LiDAR) data can provide the elevation information. Thus, the fusion of HSI and LiDAR data can help for more accurate image classification, which becomes a hot research topic. However, it is difficult to capture complex local and global spatial-spectral associations, meanwhile, how to build an effective interaction between multi-modal data is another important issue. To this end, a novel global-local transformer network (GLT-Net) is proposed for the joint classification of HSI and LiDAR data, in this paper. The main idea is to fully exploit the advantage of the convolution operator in characterizing locally correlated features and the promising capability of transformer architecture in learning long-range dependencies. Moreover, multi-scale feature fusion and probabilistic decision fusion strategies are also designed in one framework, in order to further improve classification performance. Here, the proposed GLT-Net mainly consists of multi-scale local spatial feature learning, global spectral feature learning, and global-local feature fusion classification. In specific, multi-modal image cubes of different sizes are firstly extracted and sent into convolutional neural networks (CNNs) to learn local spatial features, which is followed by multi-modal information propagation and spatial-attention guided multi-scale feature fusion. Afterwards, by considering spectral feature channels from a sequential perspective, vision transformers are introduced to model the global spectral dependencies. Finally, multiple class estimations based on local and global features are integrated via a probabilistic decision fusion strategy. In this way, complementary information of multi-modal data as well as local/global spectral-spatial information can be fully mined and jointly utilized. Extensive experiments on three popular HSI and LiDAR datasets demonstrate that the proposed method performs superiority over state-of-the-art methods. The source code of the proposed method will be made publicly available at https://github.com/Ding-Kexin/GLT-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
岂曰无衣完成签到 ,获得积分10
1秒前
李健的小迷弟应助哦哦哦采纳,获得10
3秒前
呼斯冷发布了新的文献求助10
4秒前
CipherSage应助msp采纳,获得10
5秒前
5秒前
领导范儿应助小明采纳,获得10
11秒前
陆一完成签到 ,获得积分10
11秒前
xu发布了新的文献求助10
12秒前
大个应助柍踏采纳,获得10
13秒前
科研通AI6.1应助王先生采纳,获得10
14秒前
15秒前
17秒前
17秒前
rwq完成签到 ,获得积分10
18秒前
哦哦哦发布了新的文献求助10
19秒前
wab完成签到,获得积分0
20秒前
jimskylxk发布了新的文献求助10
20秒前
研友_VZG7GZ应助柍踏采纳,获得10
22秒前
bobokan应助义气翩跹采纳,获得10
22秒前
文慧发布了新的文献求助10
24秒前
共享精神应助苗条煎饼采纳,获得10
24秒前
25秒前
27秒前
宋芽芽u完成签到 ,获得积分0
27秒前
我爱科研完成签到 ,获得积分10
28秒前
小二郎应助bruna采纳,获得10
29秒前
倪鱼发布了新的文献求助10
30秒前
32秒前
koalafish发布了新的文献求助10
32秒前
35秒前
lolly发布了新的文献求助10
35秒前
端庄冷荷完成签到 ,获得积分10
37秒前
Gypsy完成签到 ,获得积分10
38秒前
39秒前
Lucas应助jjdeng采纳,获得10
40秒前
玫瑰先森完成签到,获得积分10
42秒前
Akim应助小明采纳,获得10
42秒前
43秒前
叛逆黑洞完成签到 ,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771799
求助须知:如何正确求助?哪些是违规求助? 5593934
关于积分的说明 15428394
捐赠科研通 4905053
什么是DOI,文献DOI怎么找? 2639200
邀请新用户注册赠送积分活动 1587067
关于科研通互助平台的介绍 1541958