Global–Local Transformer Network for HSI and LiDAR Data Joint Classification

计算机科学 人工智能 激光雷达 模式识别(心理学) 概率逻辑 特征提取 高光谱成像 特征学习 上下文图像分类 卷积神经网络 特征(语言学) 遥感 数据挖掘 地理 图像(数学) 哲学 语言学
作者
Kexing Ding,Ting Lu,Wei Fu,Shutao Li,Fuyan Ma
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:81
标识
DOI:10.1109/tgrs.2022.3216319
摘要

Hyperspectral images (HSI) contain rich spatial and spectral detail information, while light detection and ranging (LiDAR) data can provide the elevation information. Thus, the fusion of HSI and LiDAR data can help for more accurate image classification, which becomes a hot research topic. However, it is difficult to capture complex local and global spatial-spectral associations, meanwhile, how to build an effective interaction between multi-modal data is another important issue. To this end, a novel global-local transformer network (GLT-Net) is proposed for the joint classification of HSI and LiDAR data, in this paper. The main idea is to fully exploit the advantage of the convolution operator in characterizing locally correlated features and the promising capability of transformer architecture in learning long-range dependencies. Moreover, multi-scale feature fusion and probabilistic decision fusion strategies are also designed in one framework, in order to further improve classification performance. Here, the proposed GLT-Net mainly consists of multi-scale local spatial feature learning, global spectral feature learning, and global-local feature fusion classification. In specific, multi-modal image cubes of different sizes are firstly extracted and sent into convolutional neural networks (CNNs) to learn local spatial features, which is followed by multi-modal information propagation and spatial-attention guided multi-scale feature fusion. Afterwards, by considering spectral feature channels from a sequential perspective, vision transformers are introduced to model the global spectral dependencies. Finally, multiple class estimations based on local and global features are integrated via a probabilistic decision fusion strategy. In this way, complementary information of multi-modal data as well as local/global spectral-spatial information can be fully mined and jointly utilized. Extensive experiments on three popular HSI and LiDAR datasets demonstrate that the proposed method performs superiority over state-of-the-art methods. The source code of the proposed method will be made publicly available at https://github.com/Ding-Kexin/GLT-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵巧幻嫣发布了新的文献求助10
刚刚
glorriiia发布了新的文献求助10
刚刚
1秒前
FashionBoy应助汪宇采纳,获得10
1秒前
zz发布了新的文献求助10
1秒前
ares-gxd完成签到,获得积分10
1秒前
Lorain发布了新的文献求助10
2秒前
观潮应助小章采纳,获得10
2秒前
粉鼻子发布了新的文献求助10
2秒前
苗条的依珊完成签到,获得积分10
2秒前
3秒前
慕青应助NatalyaF采纳,获得30
3秒前
3秒前
seall完成签到,获得积分10
3秒前
dachaozi发布了新的文献求助10
3秒前
4秒前
三七完成签到,获得积分10
4秒前
刘文静发布了新的文献求助10
4秒前
4秒前
嘻嘻发布了新的文献求助10
4秒前
ares-gxd发布了新的文献求助100
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
yuuuu完成签到,获得积分20
5秒前
5秒前
Flex完成签到,获得积分10
6秒前
6秒前
烟花应助海洋采纳,获得10
6秒前
6秒前
claude发布了新的文献求助10
7秒前
哈哈军哥哥完成签到,获得积分10
7秒前
郭菱香完成签到 ,获得积分10
7秒前
7秒前
yang完成签到,获得积分20
7秒前
心灵美自中完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
勾勾1991发布了新的文献求助10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709965
求助须知:如何正确求助?哪些是违规求助? 5197278
关于积分的说明 15259048
捐赠科研通 4862632
什么是DOI,文献DOI怎么找? 2610241
邀请新用户注册赠送积分活动 1560564
关于科研通互助平台的介绍 1518245