Global–Local Transformer Network for HSI and LiDAR Data Joint Classification

计算机科学 人工智能 激光雷达 模式识别(心理学) 概率逻辑 特征提取 高光谱成像 特征学习 上下文图像分类 卷积神经网络 特征(语言学) 遥感 数据挖掘 地理 图像(数学) 哲学 语言学
作者
Kexing Ding,Ting Lu,Wei Fu,Shutao Li,Fuyan Ma
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:81
标识
DOI:10.1109/tgrs.2022.3216319
摘要

Hyperspectral images (HSI) contain rich spatial and spectral detail information, while light detection and ranging (LiDAR) data can provide the elevation information. Thus, the fusion of HSI and LiDAR data can help for more accurate image classification, which becomes a hot research topic. However, it is difficult to capture complex local and global spatial-spectral associations, meanwhile, how to build an effective interaction between multi-modal data is another important issue. To this end, a novel global-local transformer network (GLT-Net) is proposed for the joint classification of HSI and LiDAR data, in this paper. The main idea is to fully exploit the advantage of the convolution operator in characterizing locally correlated features and the promising capability of transformer architecture in learning long-range dependencies. Moreover, multi-scale feature fusion and probabilistic decision fusion strategies are also designed in one framework, in order to further improve classification performance. Here, the proposed GLT-Net mainly consists of multi-scale local spatial feature learning, global spectral feature learning, and global-local feature fusion classification. In specific, multi-modal image cubes of different sizes are firstly extracted and sent into convolutional neural networks (CNNs) to learn local spatial features, which is followed by multi-modal information propagation and spatial-attention guided multi-scale feature fusion. Afterwards, by considering spectral feature channels from a sequential perspective, vision transformers are introduced to model the global spectral dependencies. Finally, multiple class estimations based on local and global features are integrated via a probabilistic decision fusion strategy. In this way, complementary information of multi-modal data as well as local/global spectral-spatial information can be fully mined and jointly utilized. Extensive experiments on three popular HSI and LiDAR datasets demonstrate that the proposed method performs superiority over state-of-the-art methods. The source code of the proposed method will be made publicly available at https://github.com/Ding-Kexin/GLT-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maomao完成签到 ,获得积分10
刚刚
小心薛了你完成签到,获得积分10
刚刚
4秒前
sun完成签到 ,获得积分10
5秒前
6秒前
wheat完成签到,获得积分10
8秒前
雪飞杨完成签到 ,获得积分10
8秒前
8秒前
yanjiuhuzu完成签到,获得积分10
9秒前
LIU完成签到,获得积分10
10秒前
xieyy6完成签到 ,获得积分10
12秒前
自由的雅容完成签到,获得积分10
13秒前
壮观的晓瑶完成签到 ,获得积分10
13秒前
活泼蜡烛完成签到,获得积分10
17秒前
动听的囧完成签到,获得积分10
18秒前
19秒前
温暖的问候完成签到,获得积分10
19秒前
菠萝水手完成签到,获得积分10
22秒前
XUEWENQIN关注了科研通微信公众号
23秒前
收集快乐完成签到 ,获得积分10
23秒前
caca完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
bkagyin应助酷炫的灵阳采纳,获得10
24秒前
务实的绝悟完成签到,获得积分10
26秒前
林早上完成签到,获得积分10
26秒前
郭浩峰完成签到,获得积分10
26秒前
Lotus完成签到,获得积分10
27秒前
li完成签到,获得积分10
28秒前
倩倩完成签到 ,获得积分10
31秒前
weerfi完成签到,获得积分10
32秒前
32秒前
科研通AI2S应助梦梦梦采纳,获得10
32秒前
丘比特应助Red-Rain采纳,获得10
33秒前
科研通AI6应助jhonnyhuang采纳,获得10
34秒前
没有花活儿完成签到,获得积分10
34秒前
刘一完成签到 ,获得积分10
35秒前
世洁完成签到,获得积分10
35秒前
无奈的萍完成签到,获得积分10
35秒前
XUEWENQIN发布了新的文献求助10
36秒前
iedq完成签到 ,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539314
求助须知:如何正确求助?哪些是违规求助? 4626076
关于积分的说明 14597627
捐赠科研通 4566895
什么是DOI,文献DOI怎么找? 2503687
邀请新用户注册赠送积分活动 1481599
关于科研通互助平台的介绍 1453173