Global–Local Transformer Network for HSI and LiDAR Data Joint Classification

计算机科学 人工智能 激光雷达 模式识别(心理学) 概率逻辑 特征提取 高光谱成像 特征学习 上下文图像分类 卷积神经网络 特征(语言学) 遥感 数据挖掘 地理 图像(数学) 哲学 语言学
作者
Kexing Ding,Ting Lu,Wei Fu,Shutao Li,Fuyan Ma
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:52
标识
DOI:10.1109/tgrs.2022.3216319
摘要

Hyperspectral images (HSI) contain rich spatial and spectral detail information, while light detection and ranging (LiDAR) data can provide the elevation information. Thus, the fusion of HSI and LiDAR data can help for more accurate image classification, which becomes a hot research topic. However, it is difficult to capture complex local and global spatial-spectral associations, meanwhile, how to build an effective interaction between multi-modal data is another important issue. To this end, a novel global-local transformer network (GLT-Net) is proposed for the joint classification of HSI and LiDAR data, in this paper. The main idea is to fully exploit the advantage of the convolution operator in characterizing locally correlated features and the promising capability of transformer architecture in learning long-range dependencies. Moreover, multi-scale feature fusion and probabilistic decision fusion strategies are also designed in one framework, in order to further improve classification performance. Here, the proposed GLT-Net mainly consists of multi-scale local spatial feature learning, global spectral feature learning, and global-local feature fusion classification. In specific, multi-modal image cubes of different sizes are firstly extracted and sent into convolutional neural networks (CNNs) to learn local spatial features, which is followed by multi-modal information propagation and spatial-attention guided multi-scale feature fusion. Afterwards, by considering spectral feature channels from a sequential perspective, vision transformers are introduced to model the global spectral dependencies. Finally, multiple class estimations based on local and global features are integrated via a probabilistic decision fusion strategy. In this way, complementary information of multi-modal data as well as local/global spectral-spatial information can be fully mined and jointly utilized. Extensive experiments on three popular HSI and LiDAR datasets demonstrate that the proposed method performs superiority over state-of-the-art methods. The source code of the proposed method will be made publicly available at https://github.com/Ding-Kexin/GLT-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半圭为璋发布了新的文献求助10
1秒前
homo发布了新的文献求助10
2秒前
3秒前
mov完成签到,获得积分10
4秒前
scihub111发布了新的文献求助10
4秒前
坚定的映寒完成签到 ,获得积分10
4秒前
情怀应助大吉大利采纳,获得10
4秒前
龙川武生完成签到,获得积分10
7秒前
Edison发布了新的文献求助10
9秒前
天才小能喵完成签到 ,获得积分0
9秒前
12秒前
Lucas应助Liao采纳,获得10
12秒前
12秒前
scihub111完成签到,获得积分10
13秒前
半圭为璋完成签到,获得积分10
16秒前
leoskrrr完成签到,获得积分10
16秒前
Edison完成签到,获得积分10
16秒前
19秒前
大模型应助ardejiang采纳,获得10
19秒前
丸子发布了新的文献求助10
20秒前
homo完成签到,获得积分10
22秒前
ll发布了新的文献求助10
22秒前
活泼人生完成签到 ,获得积分10
25秒前
顾矜应助soso采纳,获得10
26秒前
徐徐完成签到,获得积分10
26秒前
ZXR发布了新的文献求助50
34秒前
大个应助Alan采纳,获得10
35秒前
35秒前
37秒前
37秒前
四月妹妹完成签到,获得积分10
38秒前
Daemon完成签到,获得积分10
39秒前
soso发布了新的文献求助10
39秒前
Liao发布了新的文献求助10
40秒前
划水小舟完成签到,获得积分10
41秒前
mx发布了新的文献求助10
41秒前
甜崽发布了新的文献求助10
42秒前
科研通AI2S应助liuzengzhang666采纳,获得10
45秒前
大胆代桃发布了新的文献求助10
47秒前
Zarky完成签到,获得积分20
47秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212752
求助须知:如何正确求助?哪些是违规求助? 2861681
关于积分的说明 8129966
捐赠科研通 2527640
什么是DOI,文献DOI怎么找? 1361551
科研通“疑难数据库(出版商)”最低求助积分说明 643477
邀请新用户注册赠送积分活动 615818