清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Real‐time 3D MRI reconstruction from cine‐MRI using unsupervised network in MRI‐guided radiotherapy for liver cancer

冠状面 实时核磁共振成像 磁共振成像 核医学 动态增强MRI 人工智能 呼吸 计算机科学 标准差 医学 放射科 数学 解剖 统计
作者
Ran Wei,Jiayun Chen,Bin Liang,Xinyuan Chen,Kuo Men,Jianrong Dai
出处
期刊:Medical Physics [Wiley]
卷期号:50 (6): 3584-3596 被引量:13
标识
DOI:10.1002/mp.16141
摘要

Respiration has a major impact on the accuracy of radiation treatment for thorax and abdominal tumours. Instantaneous volumetric imaging could provide precise knowledge of tumour and normal organs' three-dimensional (3D) movement, which is the key to reducing the negative effect of breathing motion. Therefore, this study proposed a real-time 3D MRI reconstruction method from cine-MRI using an unsupervised network.Cine-MRI and setup 3D-MRI from eight patients with liver cancer were utilized to establish and validate the deep learning network for 3D-MRI reconstruction. Unlike previous methods that required 4D-MRI for network training, the proposed method utilized a reference 3D-MRI and cine-MRI to generate the training data. Then, a network was trained in an unsupervised manner to estimate the relationship between the cine-MRI acquired on coronal plane and deformation vector field (DVF) that describes the patient's breathing motion. After the training process, the coronal cine-MRI were inputted into the network, and the corresponding DVF was obtained. By wrapping the reference 3D-MRI with the generated DVF, the 3D-MRI could be reconstructed.The reconstructed 3D-MRI slices were compared with the corresponding phase-sorted cine-MRI using dice similarity coefficients (DSCs) of liver contours and blood vessel localization error. In all patients, the liver DSC had mean value >96.1% and standard deviation < 1.3%; the blood vessel localization error had mean value <2.6 mm, and standard deviation was <2.0 mm. Moreover, the time for 3D-MRI reconstruction was approximately 100 ms. These results indicated that the proposed method could accurately reconstruct the 3D-MRI in real time.The proposed method could accurately reconstruct the 3D-MRI from cine-MRI in real time. This method has great potential in improving the accuracy of radiotherapy for moving tumours.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
詹虔发布了新的文献求助10
5秒前
GPTea应助爱听歌笑寒采纳,获得10
8秒前
小蘑菇应助读书的时候采纳,获得10
9秒前
一盏壶完成签到,获得积分10
11秒前
wanci应助邵小庆采纳,获得10
15秒前
22秒前
24秒前
詹虔发布了新的文献求助10
27秒前
邵小庆发布了新的文献求助10
29秒前
32秒前
dinglingling完成签到 ,获得积分10
34秒前
科研通AI5应助读书的时候采纳,获得10
37秒前
lalalapa666发布了新的文献求助20
40秒前
51秒前
科研通AI5应助邵小庆采纳,获得10
55秒前
科研通AI5应助读书的时候采纳,获得10
56秒前
詹虔发布了新的文献求助10
58秒前
1分钟前
1分钟前
科研通AI5应助读书的时候采纳,获得10
1分钟前
1分钟前
詹虔发布了新的文献求助10
1分钟前
搜集达人应助消逝采纳,获得10
1分钟前
GPTea应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
消逝发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Omni发布了新的文献求助10
1分钟前
邵小庆发布了新的文献求助10
1分钟前
1分钟前
詹虔发布了新的文献求助10
1分钟前
赘婿应助读书的时候采纳,获得10
1分钟前
邵小庆完成签到,获得积分10
2分钟前
科研通AI5应助读书的时候采纳,获得10
2分钟前
詹虔完成签到,获得积分10
2分钟前
vbnn完成签到 ,获得积分10
2分钟前
ffff完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935596
求助须知:如何正确求助?哪些是违规求助? 4202889
关于积分的说明 13058992
捐赠科研通 3978453
什么是DOI,文献DOI怎么找? 2179684
邀请新用户注册赠送积分活动 1195702
关于科研通互助平台的介绍 1107508