Real‐time 3D MRI reconstruction from cine‐MRI using unsupervised network in MRI‐guided radiotherapy for liver cancer

冠状面 实时核磁共振成像 磁共振成像 核医学 动态增强MRI 人工智能 呼吸 计算机科学 标准差 医学 放射科 数学 解剖 统计
作者
Ran Wei,Jiayun Chen,Bin Liang,Xinyuan Chen,Kuo Men,Jianrong Dai
出处
期刊:Medical Physics [Wiley]
卷期号:50 (6): 3584-3596 被引量:10
标识
DOI:10.1002/mp.16141
摘要

Respiration has a major impact on the accuracy of radiation treatment for thorax and abdominal tumours. Instantaneous volumetric imaging could provide precise knowledge of tumour and normal organs' three-dimensional (3D) movement, which is the key to reducing the negative effect of breathing motion. Therefore, this study proposed a real-time 3D MRI reconstruction method from cine-MRI using an unsupervised network.Cine-MRI and setup 3D-MRI from eight patients with liver cancer were utilized to establish and validate the deep learning network for 3D-MRI reconstruction. Unlike previous methods that required 4D-MRI for network training, the proposed method utilized a reference 3D-MRI and cine-MRI to generate the training data. Then, a network was trained in an unsupervised manner to estimate the relationship between the cine-MRI acquired on coronal plane and deformation vector field (DVF) that describes the patient's breathing motion. After the training process, the coronal cine-MRI were inputted into the network, and the corresponding DVF was obtained. By wrapping the reference 3D-MRI with the generated DVF, the 3D-MRI could be reconstructed.The reconstructed 3D-MRI slices were compared with the corresponding phase-sorted cine-MRI using dice similarity coefficients (DSCs) of liver contours and blood vessel localization error. In all patients, the liver DSC had mean value >96.1% and standard deviation < 1.3%; the blood vessel localization error had mean value <2.6 mm, and standard deviation was <2.0 mm. Moreover, the time for 3D-MRI reconstruction was approximately 100 ms. These results indicated that the proposed method could accurately reconstruct the 3D-MRI in real time.The proposed method could accurately reconstruct the 3D-MRI from cine-MRI in real time. This method has great potential in improving the accuracy of radiotherapy for moving tumours.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助jxzhou采纳,获得10
刚刚
Wong Ka Kui完成签到,获得积分10
刚刚
qq完成签到 ,获得积分10
1秒前
1秒前
junfeiwang发布了新的文献求助10
1秒前
谨慎青亦发布了新的文献求助10
2秒前
sciyidingyou完成签到,获得积分10
2秒前
呆呆发布了新的文献求助10
3秒前
herococa应助绺妙采纳,获得10
3秒前
田様应助lswhyr采纳,获得10
3秒前
研友_yLpErn发布了新的文献求助10
4秒前
怎么会这样呢完成签到,获得积分20
4秒前
隐形曼青应助李晓萌采纳,获得10
4秒前
小马甲应助钢牙刷采纳,获得10
5秒前
5秒前
王小玮发布了新的文献求助10
5秒前
赘婿应助活泼的番茄采纳,获得10
6秒前
谨慎青亦完成签到,获得积分10
6秒前
科研小黑完成签到,获得积分10
7秒前
临床医学研究中心完成签到,获得积分10
8秒前
duotianzhiyi完成签到,获得积分10
8秒前
背书强完成签到 ,获得积分10
9秒前
星辰大海应助serena0_0采纳,获得10
9秒前
9秒前
一心难求完成签到,获得积分10
10秒前
华仔应助ZHU采纳,获得10
10秒前
虚幻的亦旋完成签到,获得积分10
11秒前
11秒前
Booiys完成签到,获得积分10
12秒前
12秒前
123455完成签到,获得积分10
12秒前
12秒前
852应助袁钰琳采纳,获得10
13秒前
abner完成签到,获得积分10
13秒前
14秒前
14秒前
16秒前
拿捏陕科大完成签到,获得积分10
16秒前
16秒前
开心的小熊完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950265
求助须知:如何正确求助?哪些是违规求助? 3495724
关于积分的说明 11078490
捐赠科研通 3226143
什么是DOI,文献DOI怎么找? 1783626
邀请新用户注册赠送积分活动 867725
科研通“疑难数据库(出版商)”最低求助积分说明 800904