Analyzing CT images for detecting lung cancer by applying the computational intelligence‐based optimization techniques

肺癌 计算机科学 聚类分析 特征选择 自编码 模式识别(心理学) 人工智能 人工神经网络 医学 病理
作者
Mohamed Shakeel Pethuraj,Burhanuddin Mohd Aboobaider,Lizawati Salahuddin
出处
期刊:Computational Intelligence [Wiley]
卷期号:39 (6): 930-949 被引量:1
标识
DOI:10.1111/coin.12567
摘要

Abstract Lung cancer is the most critical disease because it affects both men and women. Most of the time, lung cancer leads to death due to less health care and medical attention. In addition, lung cancer is difficult to identify in earlier stages due to the low‐level symptoms and risk factors. To overcome the complexity, effective techniques must predict lung cancer earlier. To attain the problem statement, an lung cancer identification system is developed with the help of a meta‐heuristic algorithm. The CT imageries obtained from the CIA database are analyzed step by step. The gathered image noise is removed by applying the mean filter, and the affected regions are segmented with the help of the Butterfly Optimization Algorithm‐based K‐Means Clustering (BOAKMC) algorithm. Afterward, various statistical features are derived, and the Supervised Jaya Optimized Rough Set related Feature Selection (SJORSFS) process is used to select the lung features. Finally, the lung cancer is identified using Autoencoder based Recurrent Neural Network (ARNN) classification algorithm, successfully recognizing the lung cancer features. Then the system's efficiency is evaluated using a MATLAB setup; here, 3000 are treated as training images and 2043 for testing images. The effective training enhances overall lung cancer prediction accuracy by up to 99.15%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
努力发布了新的文献求助10
3秒前
姜露萍发布了新的文献求助10
3秒前
111222关注了科研通微信公众号
4秒前
6秒前
7秒前
7秒前
wssamuel完成签到 ,获得积分10
8秒前
天天快乐应助陈曦采纳,获得10
8秒前
9秒前
暮暮发布了新的文献求助10
12秒前
海比天蓝发布了新的文献求助10
12秒前
Hello应助lzx采纳,获得10
12秒前
16秒前
车灵波完成签到,获得积分10
17秒前
像只猫发布了新的文献求助10
17秒前
18秒前
19秒前
一裤子灰发布了新的文献求助10
20秒前
20秒前
hyw完成签到,获得积分10
21秒前
21秒前
22秒前
HotnessK完成签到,获得积分10
23秒前
wlei发布了新的文献求助10
23秒前
biubiudididi发布了新的文献求助10
23秒前
23秒前
24秒前
26秒前
28秒前
FSF完成签到,获得积分10
28秒前
29秒前
29秒前
30秒前
竹子完成签到,获得积分10
30秒前
顾矜应助风趣依瑶采纳,获得10
30秒前
灵溪发布了新的文献求助10
31秒前
小二郎应助一裤子灰采纳,获得10
32秒前
斯文念波发布了新的文献求助10
32秒前
丰富新儿完成签到,获得积分10
33秒前
扭扭车完成签到,获得积分20
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176