回溯
列生成
数学优化
趋同(经济学)
约束(计算机辅助设计)
栏(排版)
计算机科学
最优化问题
约束优化
数学
算法
电信
几何学
帧(网络)
经济
经济增长
作者
Man Yiu Tsang,Karmel S. Shehadeh,Frank E. Curtis
标识
DOI:10.1016/j.orl.2022.12.002
摘要
We propose a new inexact column-and-constraint generation (i-C&CG) method to solve two-stage robust optimization problems. The method allows solutions to the master problems to be inexact, which is desirable when solving large-scale and/or challenging problems. It is equipped with a backtracking routine that controls the trade-off between bound improvement and inexactness. Importantly, this routine allows us to derive theoretical finite convergence guarantees for our i-C&CG method. Numerical experiments demonstrate computational advantages of our i-C&CG method over state-of-the-art column-and-constraint generation methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI