TC-Net: A Transformer Capsule Network for EEG-based emotion recognition

计算机科学 脑电图 卷积神经网络 模式识别(心理学) 人工智能 变压器 语音识别 特征提取 深度学习 电压 工程类 神经科学 心理学 电气工程
作者
Yi Wei,Yü Liu,Chang Li,Juan Cheng,Rencheng Song,Xun Chen
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:152: 106463-106463 被引量:58
标识
DOI:10.1016/j.compbiomed.2022.106463
摘要

Deep learning has recently achieved remarkable success in emotion recognition based on Electroencephalogram (EEG), in which convolutional neural networks (CNNs) are the mostly used models. However, due to the local feature learning mechanism, CNNs have difficulty in capturing the global contextual information involving temporal domain, frequency domain, intra-channel and inter-channel. In this paper, we propose a Transformer Capsule Network (TC-Net), which mainly contains an EEG Transformer module to extract EEG features and an Emotion Capsule module to refine the features and classify the emotion states. In the EEG Transformer module, EEG signals are partitioned into non-overlapping windows. A Transformer block is adopted to capture global features among different windows, and we propose a novel patch merging strategy named EEG-PatchMerging (EEG-PM) to better extract local features. In the Emotion Capsule module, each channel of the EEG feature maps is encoded into a capsule to better characterize the spatial relationships among multiple features. Experimental results on two popular datasets (i.e., DEAP and DREAMER) demonstrate that the proposed method achieves the state-of-the-art performance in the subject-dependent scenario. Specifically, on DEAP (DREAMER), our TC-Net achieves the average accuracies of 98.76% (98.59%), 98.81% (98.61%) and 98.82% (98.67%) at valence, arousal and dominance dimensions, respectively. Moreover, the proposed TC-Net also shows high effectiveness in multi-state emotion recognition tasks using the popular VA and VAD models. The main limitation of the proposed model is that it tends to obtain relatively low performance in the cross-subject recognition task, which is worthy of further study in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NIUB完成签到,获得积分10
1秒前
3秒前
打打应助zzszy采纳,获得10
4秒前
BCyu应助灵巧书本采纳,获得10
4秒前
思思发布了新的文献求助10
4秒前
田様应助zhangqin采纳,获得10
5秒前
朴素夜梦发布了新的文献求助10
5秒前
5秒前
nicolaslcq完成签到,获得积分10
7秒前
7秒前
8秒前
缓慢珠发布了新的文献求助10
9秒前
爱静静应助zhangqin采纳,获得10
9秒前
10秒前
Kaelin完成签到,获得积分10
10秒前
10秒前
Kaelin发布了新的文献求助10
13秒前
含章发布了新的文献求助10
14秒前
16秒前
英俊的铭应助EROIL采纳,获得10
17秒前
不止一点忙的小白完成签到,获得积分10
17秒前
Arjun发布了新的文献求助30
19秒前
晴晴完成签到,获得积分20
19秒前
19秒前
慕子完成签到 ,获得积分10
22秒前
石头完成签到 ,获得积分20
22秒前
Akim应助含章采纳,获得10
22秒前
欧阳万仇发布了新的文献求助10
23秒前
Aurora发布了新的文献求助10
23秒前
Chaos发布了新的文献求助10
25秒前
带你那完成签到,获得积分10
25秒前
27秒前
27秒前
子车茗应助徐芆点采纳,获得30
28秒前
29秒前
章德仁发布了新的文献求助10
31秒前
hellokk发布了新的文献求助10
31秒前
zzszy发布了新的文献求助10
33秒前
健康的访枫完成签到 ,获得积分10
35秒前
闾丘翠琴完成签到 ,获得积分10
36秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343583
求助须知:如何正确求助?哪些是违规求助? 2970629
关于积分的说明 8644643
捐赠科研通 2650717
什么是DOI,文献DOI怎么找? 1451432
科研通“疑难数据库(出版商)”最低求助积分说明 672137
邀请新用户注册赠送积分活动 661569