TC-Net: A Transformer Capsule Network for EEG-based emotion recognition

计算机科学 脑电图 卷积神经网络 模式识别(心理学) 人工智能 变压器 语音识别 特征提取 深度学习 电压 工程类 神经科学 心理学 电气工程
作者
Yi Wei,Yü Liu,Chang Li,Juan Cheng,Rencheng Song,Xun Chen
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:152: 106463-106463 被引量:63
标识
DOI:10.1016/j.compbiomed.2022.106463
摘要

Deep learning has recently achieved remarkable success in emotion recognition based on Electroencephalogram (EEG), in which convolutional neural networks (CNNs) are the mostly used models. However, due to the local feature learning mechanism, CNNs have difficulty in capturing the global contextual information involving temporal domain, frequency domain, intra-channel and inter-channel. In this paper, we propose a Transformer Capsule Network (TC-Net), which mainly contains an EEG Transformer module to extract EEG features and an Emotion Capsule module to refine the features and classify the emotion states. In the EEG Transformer module, EEG signals are partitioned into non-overlapping windows. A Transformer block is adopted to capture global features among different windows, and we propose a novel patch merging strategy named EEG-PatchMerging (EEG-PM) to better extract local features. In the Emotion Capsule module, each channel of the EEG feature maps is encoded into a capsule to better characterize the spatial relationships among multiple features. Experimental results on two popular datasets (i.e., DEAP and DREAMER) demonstrate that the proposed method achieves the state-of-the-art performance in the subject-dependent scenario. Specifically, on DEAP (DREAMER), our TC-Net achieves the average accuracies of 98.76% (98.59%), 98.81% (98.61%) and 98.82% (98.67%) at valence, arousal and dominance dimensions, respectively. Moreover, the proposed TC-Net also shows high effectiveness in multi-state emotion recognition tasks using the popular VA and VAD models. The main limitation of the proposed model is that it tends to obtain relatively low performance in the cross-subject recognition task, which is worthy of further study in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huazhangchina发布了新的文献求助10
刚刚
asdfghjkl完成签到,获得积分10
1秒前
祥辉NCU完成签到,获得积分10
1秒前
大模型应助YYH采纳,获得10
2秒前
Billy发布了新的文献求助10
2秒前
共享精神应助老实乌冬面采纳,获得10
2秒前
俞兴达发布了新的文献求助10
2秒前
2秒前
3秒前
兴奋寄容发布了新的文献求助10
3秒前
橘子发布了新的文献求助20
3秒前
黎明森完成签到,获得积分10
4秒前
6秒前
生产队的LV应助oaim采纳,获得10
6秒前
从前慢完成签到,获得积分10
6秒前
隐形曼青应助DDL消失采纳,获得10
7秒前
7秒前
熠熠发布了新的文献求助30
7秒前
刘安娜发布了新的文献求助10
8秒前
乐乐应助陈某某采纳,获得10
9秒前
宠仙发布了新的文献求助10
10秒前
11秒前
11秒前
siestaMiao发布了新的文献求助10
12秒前
猫科动物发布了新的文献求助10
12秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
孟__发布了新的文献求助10
14秒前
15秒前
jackgu完成签到,获得积分10
15秒前
今后应助干净的夜蓉采纳,获得10
15秒前
16秒前
17秒前
17秒前
89发布了新的文献求助10
17秒前
17秒前
斯文败类应助echo采纳,获得10
18秒前
LGH发布了新的文献求助10
18秒前
mingming发布了新的文献求助10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952038
求助须知:如何正确求助?哪些是违规求助? 3497457
关于积分的说明 11087593
捐赠科研通 3228096
什么是DOI,文献DOI怎么找? 1784669
邀请新用户注册赠送积分活动 868839
科研通“疑难数据库(出版商)”最低求助积分说明 801198