Voiceprint and machine learning models for early detection of bulbar dysfunction in ALS

肌萎缩侧索硬化 延髓麻痹 听力学 吞咽 医学 多元分析 构音障碍 支持向量机 随机森林 语音识别 疾病 计算机科学 人工智能 内科学 外科
作者
Alberto Tena,F. Clariá,Francesc Solsona,Mónica Povedano
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:229: 107309-107309 被引量:5
标识
DOI:10.1016/j.cmpb.2022.107309
摘要

Bulbar dysfunction is a term used in amyotrophic lateral sclerosis (ALS). It refers to motor neuron disability in the corticobulbar area of the brainstem which leads to a dysfunction of speech and swallowing. One of the earliest symptoms of bulbar dysfunction is voice deterioration characterized by grossly defective articulation, extremely slow laborious speech, marked hypernasality and severe harshness. Recently, research efforts have focused on voice analysis to capture this dysfunction. The main aim of this paper is to provide a new methodology to diagnose this dysfunction automatically at early stages of the disease, earlier than clinicians can do.The study focused on the creation of a voiceprint consisting of a pattern generated from the quasi-periodic components of a steady portion of the five Spanish vowels and the computation of the five principal and independent components of this pattern. Then, a set of statistically significant features was obtained using multivariate analysis of variance and the outcomes of the most common supervised classification models were obtained.The best model (random forest) obtained an accuracy, sensitivity and specificity of 88.3%, 85.0% and 95.0% respectively when classifying bulbar vs. control participants but the results worsened when classifying bulbar vs. no-bulbar patients (accuracy, sensitivity and specificity of 78.7%, 80.0% and 77.5% respectively for support vector machines). Due to the great uncertainty found in the annotated corpus of the ALS patients without bulbar involvement, we used a safe semi-supervised support vector machine to relabel the ALS participants diagnosed without bulbar involvement as bulbar and no-bulbar. The performance of the results obtained increased, especially when classifying bulbar and no-bulbar patients obtaining an accuracy, sensitivity and specificity of 91.0%, 83.3% and 100.0% respectively for support vector machines. This demonstrates that our model can improve the diagnosis of bulbar dysfunction compared not only with clinicians, but also the methods published to date.The results obtained demonstrate the efficiency and applicability of the methodology presented in this paper. It may lead to the development of a cheap and easy-to-use tool to identify this dysfunction in early stages of the disease and monitor progress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
w8816完成签到,获得积分10
刚刚
蓝风铃完成签到 ,获得积分10
1秒前
秋雅完成签到,获得积分10
2秒前
eva1998发布了新的文献求助10
2秒前
锤锤完成签到 ,获得积分10
4秒前
哈哈完成签到,获得积分10
4秒前
不配.应助看不完的文献采纳,获得20
4秒前
fifteen应助啵叽一口采纳,获得10
4秒前
6秒前
专一的书雪完成签到,获得积分10
7秒前
kaixin发布了新的文献求助10
8秒前
暮光之城完成签到,获得积分10
10秒前
树上的猫头鹰完成签到,获得积分10
12秒前
12秒前
赤岩完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
Jasper应助呵浅陌采纳,获得10
15秒前
赤岩发布了新的文献求助10
16秒前
JM发布了新的文献求助10
16秒前
18秒前
伊橙发布了新的文献求助10
18秒前
港岛妹妹发布了新的文献求助10
18秒前
研友_n2QP2L完成签到,获得积分10
19秒前
zha发布了新的文献求助30
19秒前
21秒前
22秒前
zhanghan完成签到,获得积分10
22秒前
22秒前
24秒前
24秒前
石绿海完成签到,获得积分10
25秒前
jzy完成签到,获得积分10
26秒前
超级访云完成签到,获得积分10
26秒前
yubin.cao完成签到,获得积分10
27秒前
呵浅陌发布了新的文献求助10
28秒前
婷婷发布了新的文献求助10
28秒前
华新完成签到,获得积分10
29秒前
29秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240186
求助须知:如何正确求助?哪些是违规求助? 2885221
关于积分的说明 8237360
捐赠科研通 2553498
什么是DOI,文献DOI怎么找? 1381664
科研通“疑难数据库(出版商)”最低求助积分说明 649317
邀请新用户注册赠送积分活动 625009