Voiceprint and machine learning models for early detection of bulbar dysfunction in ALS

肌萎缩侧索硬化 延髓麻痹 听力学 吞咽 医学 多元分析 构音障碍 支持向量机 随机森林 语音识别 疾病 计算机科学 人工智能 内科学 外科
作者
Alberto Tena,F. Clariá,Francesc Solsona,Mónica Povedano
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:229: 107309-107309 被引量:5
标识
DOI:10.1016/j.cmpb.2022.107309
摘要

Bulbar dysfunction is a term used in amyotrophic lateral sclerosis (ALS). It refers to motor neuron disability in the corticobulbar area of the brainstem which leads to a dysfunction of speech and swallowing. One of the earliest symptoms of bulbar dysfunction is voice deterioration characterized by grossly defective articulation, extremely slow laborious speech, marked hypernasality and severe harshness. Recently, research efforts have focused on voice analysis to capture this dysfunction. The main aim of this paper is to provide a new methodology to diagnose this dysfunction automatically at early stages of the disease, earlier than clinicians can do.The study focused on the creation of a voiceprint consisting of a pattern generated from the quasi-periodic components of a steady portion of the five Spanish vowels and the computation of the five principal and independent components of this pattern. Then, a set of statistically significant features was obtained using multivariate analysis of variance and the outcomes of the most common supervised classification models were obtained.The best model (random forest) obtained an accuracy, sensitivity and specificity of 88.3%, 85.0% and 95.0% respectively when classifying bulbar vs. control participants but the results worsened when classifying bulbar vs. no-bulbar patients (accuracy, sensitivity and specificity of 78.7%, 80.0% and 77.5% respectively for support vector machines). Due to the great uncertainty found in the annotated corpus of the ALS patients without bulbar involvement, we used a safe semi-supervised support vector machine to relabel the ALS participants diagnosed without bulbar involvement as bulbar and no-bulbar. The performance of the results obtained increased, especially when classifying bulbar and no-bulbar patients obtaining an accuracy, sensitivity and specificity of 91.0%, 83.3% and 100.0% respectively for support vector machines. This demonstrates that our model can improve the diagnosis of bulbar dysfunction compared not only with clinicians, but also the methods published to date.The results obtained demonstrate the efficiency and applicability of the methodology presented in this paper. It may lead to the development of a cheap and easy-to-use tool to identify this dysfunction in early stages of the disease and monitor progress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独的AD钙完成签到,获得积分10
刚刚
1秒前
fang应助miao采纳,获得10
2秒前
星辰与月完成签到,获得积分10
2秒前
Pt-SACs发布了新的文献求助10
2秒前
安静无招完成签到 ,获得积分10
6秒前
lqphysics完成签到,获得积分10
7秒前
Jerry完成签到 ,获得积分10
7秒前
枕星发布了新的文献求助10
7秒前
全职法师刘海柱完成签到,获得积分10
9秒前
Umar完成签到,获得积分10
9秒前
accepted完成签到,获得积分10
10秒前
11秒前
Pt-SACs完成签到,获得积分10
12秒前
wgglegg完成签到 ,获得积分10
12秒前
饱满跳跳糖完成签到,获得积分10
12秒前
zhaoxiaonuan完成签到,获得积分10
12秒前
13秒前
赘婿应助2023204306324采纳,获得10
13秒前
英勇笑萍完成签到,获得积分10
14秒前
yar完成签到 ,获得积分10
15秒前
16秒前
伦语发布了新的文献求助10
16秒前
沉静怜蕾完成签到,获得积分10
16秒前
16秒前
欢呼白晴完成签到 ,获得积分10
17秒前
凉白开发布了新的文献求助10
17秒前
金扇扇完成签到 ,获得积分10
17秒前
Odyssey_Cheung完成签到,获得积分10
18秒前
JG完成签到,获得积分10
18秒前
明亮紫易完成签到,获得积分10
19秒前
张绪帆完成签到,获得积分10
19秒前
20秒前
龙眼完成签到,获得积分10
20秒前
clientprogram完成签到,获得积分0
20秒前
wendy发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
zyc完成签到,获得积分10
22秒前
废羊羊完成签到 ,获得积分10
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029