Strong effect of fluid rheology on electrokinetic instability and subsequent mixing phenomena in a microfluidic T-junction

非牛顿流体 膨胀的 流变学 剪切减薄 机械 物理 牛顿流体 剪切流 混沌混合 不稳定性 电动现象 幂律流体 热力学 材料科学 平流 纳米技术
作者
F. Hamid,C. Sasmal
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (1) 被引量:7
标识
DOI:10.1063/5.0130993
摘要

This study presents a detailed investigation of how the rheological behaviour of fluid could influence the electrokinetic instability (EKI) phenomenon in a microfluidic T-junction. The non-Newtonian power-law model with different values of the power-law index (n) is used to obtain fluids of different rheological behaviours. We find that as the fluid rheological behaviour changes from shear-thickening (n > 1) to shear-thinning (n < 1) via the Newtonian (n = 1) one, the EKI phenomenon is significantly influenced under the same conditions. In particular, the intensity of this EKI phenomenon is found to be significantly higher in shear-thinning fluids than in Newtonian and shear-thickening fluids. As a result, the corresponding mixing phenomenon, often achieved using this EKI phenomenon, is also notably enhanced in shear-thinning fluids compared to that achieved in Newtonian and shear-thickening fluids. A detailed analysis of both the flow dynamics and mixing phenomena in terms of streamlines, velocity fluctuations, concentration field, mixing efficiency, etc., is presented and discussed in this study. We also employ the data-driven dynamic mode decomposition (DMD) technique to analyze the flow field in more detail. In particular, the information on the coherent flow structures obtained with different values of the power-law index facilitates the understanding of both the EKI-induced chaotic convection and mixing phenomena in a better way; for instance, why the mixing efficiency is higher in shear-thinning fluids than that in Newtonian and shear-thickening fluids. Moreover, we observe that the spatial expanse and intensity of these coherent structures differ significantly as the power-law index changes, thereby providing valuable insights into certain aspects of the underlying flow dynamics that otherwise are not clearly apparent from other analyses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
AZ发布了新的文献求助10
刚刚
学谦完成签到,获得积分10
1秒前
伯赏元彤完成签到 ,获得积分10
1秒前
做实验的猹完成签到,获得积分10
2秒前
科研通AI6应助123rgk采纳,获得10
3秒前
冰阔罗完成签到,获得积分10
3秒前
852应助畅快的煜祺采纳,获得10
3秒前
醉翁发布了新的文献求助10
3秒前
3秒前
Criminology34应助醉在肩上采纳,获得10
4秒前
直率的钢铁侠完成签到,获得积分10
4秒前
善学以致用应助12334采纳,获得10
4秒前
道心完成签到,获得积分10
4秒前
xiaojiu完成签到,获得积分10
5秒前
劣根完成签到,获得积分10
5秒前
科研小秦发布了新的文献求助10
5秒前
欢呼芒果完成签到,获得积分10
5秒前
6秒前
Jun完成签到 ,获得积分10
6秒前
6秒前
wyq完成签到,获得积分10
9秒前
千流完成签到,获得积分10
9秒前
terrell完成签到,获得积分10
9秒前
10秒前
dique3hao完成签到 ,获得积分10
10秒前
蓝韵完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
宋艳芳完成签到,获得积分10
11秒前
醉翁完成签到,获得积分10
11秒前
Ericlibrave完成签到 ,获得积分10
11秒前
熬夜波比应助AoAoo采纳,获得10
12秒前
gugujk应助紧张的绿茶采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664939
求助须知:如何正确求助?哪些是违规求助? 4873377
关于积分的说明 15110105
捐赠科研通 4823973
什么是DOI,文献DOI怎么找? 2582614
邀请新用户注册赠送积分活动 1536518
关于科研通互助平台的介绍 1495130