An AI-enabled approach for improving advertising identification and promotion in social networks

计算机科学 鉴定(生物学) 晋升(国际象棋) 人工神经网络 在线广告 机器学习 社会化媒体 过程(计算) 社交网络(社会语言学) 人工智能 遗传算法 互联网 广告宣传 广告 万维网 业务 操作系统 政治 生物 法学 植物 政治学
作者
Shi Bai-sheng,Hao Wang
出处
期刊:Technological Forecasting and Social Change [Elsevier]
卷期号:188: 122269-122269 被引量:2
标识
DOI:10.1016/j.techfore.2022.122269
摘要

The rapid development of the social economy has considerably impacted the traditional advertising industry. In terms of identifying and recommending advertisements, improving the accuracy of advertisement promotion and identification is an urgent need. Artificial intelligence (AI) methods are of practical application to facilitate digital transformation in the advertising industry. Among the many AI methods, the network model based on the genetic algorithm back propagation (GABP) neural network is the most compatible with applications in the advertising industry. In this work, the GABP neural network is applied in the construction of social networks to predict the click-through rate (CTR) of website advertising applications through the optimization of advertising promotion strategies. In the processes of optimizing and improving the system model using AI methods, the technological focus is the accuracy of advertising promotion and identification for the developing advertising industry. First, background information on the era of internet and AI development is analyzed. The new media technology is discussed through AI research and traditional advertising industry literature. In addition, a CTR prediction model is created for advertising applications based on the GABP network. In the neural network improvement process, the performance of GABP is enhanced through multiple iterations by optimizing the application strategy of advertising scenarios according to the topology of network connections. The study results demonstrate that different algorithms' recognition accuracy and precision show an increasing trend as the number of model iterations increases. The recognition accuracy of GABP increases from 49 % to 72 %, and the recognition precision of the algorithm increases from 69 % to 86 %. In addition, the area under the curve (AUC) value of the GABP network is only 0.6 before the number of neurons increases. When the number of neurons is 400, the AUC value of the algorithm reaches 0.82, and the comprehensive diagnostic value of the system dramatically improves. This research has significant reference value for reforming the traditional advertising work mode, enhancing intellectual development and promoting resource efficiency in the advertising industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
尉迟明风完成签到 ,获得积分10
1秒前
含章发布了新的文献求助10
1秒前
暗号发布了新的文献求助10
2秒前
Ava应助孤独的AD钙采纳,获得10
2秒前
CipherSage应助xmd采纳,获得10
2秒前
田様应助杨合霖采纳,获得10
3秒前
Orange应助筷子吃不了面采纳,获得10
3秒前
3秒前
宇心应助zhao采纳,获得10
4秒前
4秒前
5秒前
邱邵芸发布了新的文献求助10
5秒前
5秒前
天天快乐应助ZL采纳,获得10
5秒前
王黎发布了新的文献求助10
5秒前
诚心水蓝完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
8秒前
8秒前
落后冬灵完成签到,获得积分20
9秒前
9秒前
9秒前
9秒前
玥来玥好发布了新的文献求助10
9秒前
魁梧的海秋完成签到,获得积分10
9秒前
树上的妖怪完成签到,获得积分10
9秒前
张努力完成签到,获得积分10
10秒前
yii发布了新的文献求助10
10秒前
10秒前
11秒前
一方通行发布了新的文献求助10
11秒前
aiqiangyu发布了新的文献求助10
13秒前
xmd发布了新的文献求助10
13秒前
13秒前
叶子完成签到,获得积分10
13秒前
彭于晏应助金jin采纳,获得10
14秒前
搜集达人应助郭慧梅采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559249
求助须知:如何正确求助?哪些是违规求助? 3133915
关于积分的说明 9404473
捐赠科研通 2834019
什么是DOI,文献DOI怎么找? 1557787
邀请新用户注册赠送积分活动 727686
科研通“疑难数据库(出版商)”最低求助积分说明 716399